
Kubernetes:
The Future of
Infrastructure

Marco Palladino

How Kubernetes Is Modernizing the
Microservices Architecture



© 2018 Kong Inc. All rights reserved.



Kubernetes: 
The Future of 
Infrastructure
How Kubernetes Is Modernizing the
Microservices Architecture

Marco Palladino





In this book we’ll discuss how Kubernetes 
enhances a container-based microservices 
architecture. We’ll examine the rise of containers 
and Kubernetes to understand the organizational 
and technical advantages of each. This will 
include a deep dive into the ways Kubernetes can 
improve processes for deploying, scaling, and 
managing containerized applications.





Content

Next Generation Application Development			       8

Like virtual machines, but Better 		  		      9

The Next Frontier: Container Orchestration			     10

Kubernetes: Modern Infrastructure for Modern Applications	   11

How Kubernetes Gets Work Done				      13

The Container Orchestration Landscape			     14 

How Kubernetes is Changing Microservices Architectures	   15

The Future is Bright						        16



8

Kubernetes: The Future of Infrastructure

Next Generation Application Development

The world of IT infrastructure has evolved dramatically since the days 
of relying solely on bare metal hardware to support application develop-
ment. In the early 2000s, a company called VMWare broke the mold, 
giving rise to virtualization — using an abstraction that makes software 
(virtual machines) look and behave like hardware. The primary differ-
ence between virtualization and bare metal is the inherent benefit of us-
ing software to “virtualize” infrastructure. Virtualization offers increased 
flexibility, scalability, reliability, and often overall capability and perfor-
mance, all while lowering capital and operational expenses.
 
In recent years, the confluence of cloud computing and big data has 
fueled another explosion in technology designed to further improve 
flexibility and convenience at scale — the adoption of containers to 
facilitate software development and the proliferation of microservices.
 
Containers are a more efficient way of packaging software — including 
all the elements needed to run software, such as code, runtime, system 
tools, system libraries, and settings. 451 Research projects that the 
overall market for containers will hit roughly $2.7 billion in 2020, a 3.5-
fold increase from the $762 million spent on container-related technol-
ogy in 2016.
 
With containers, all the moving parts and dependencies across various 
infrastructure, become less complex and obvious, enabling developers 
to work with identical development environments and stacks.

Abstraction layers: From servers, to VM, to Containers 

!"#$ &$'"(

)&

)&

)&

)&

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

https://451research.com/images/Marketing/press_releases/Application-container-market-will-reach-2-7bn-in-2020_final_graphic.pdf


9

Kubernetes: The Future of Infrastructure

Like Virtual Machines, but Better
There are many parallels between the rise of virtual machines and 
the rise of containers. Containers are transforming the way in which 
software is developed in the same way that virtualization and virtual 
machines did in the early and mid-2000s. Before virtual machines, if 
we wanted to scale our infrastructure to support software development 
needs, we had to buy more servers and physically scale it. This was a 
very resource intensive and costly endeavor to not only build out, but 
also maintain for performance and availability. But virtual machines 
changed the game, allowing us to scale more easily without needing to 
run to our hardware vendor to purchase servers. We could increase the 
efficiency of the hardware we currently had and scale to thousands of 
virtual machines on top of that existing infrastructure. In their simplest 
form, containers help us accomplish the same thing by enabling us to 
squeeze the most out of every single inch of hardware we are running 
underneath it, but at a much larger scale.
 
There are many benefits of using containers. First, DevOps teams 
benefit greatly due to the more efficient approach to software develop-
ment. Containers allow engineering teams to be more agile by reducing 
wasted resources and empowering teams to build and share code more 
rapidly in the form of microservices. On top of this, containerization 
improves scalability through a more lightweight and resource-efficient 
approach. This improved scalability, coupled with the improvements 
in development efficiency and velocity, results in greater time and cost 
efficiencies.
 
Containers are highly flexible and scalable. With containers, we can 
leverage more processes on each virtual machine and increase its 
efficiency. We can also run any sort of workload within a container be-
cause it is isolated, which ensures that each workload is protected from 
the others. As a result, a container cannot destroy or impact another 
container.



10

Kubernetes: The Future of Infrastructure

Ease of use is another core benefit of containers. Similar to how virtual 
machines were easier to create, scale, and manage compared to physi-
cal hardware, containers make it even easier to build software than 
virtual machines because they can start up in a few seconds. Gone are 
the days of running the heavy load of processes required by a full virtual 
machine. Instead, a container affords us the luxury of running a light-
weight, isolated process on top of our existing virtual machine. This 
allows us to quickly and easily scale without getting bogged down with 
DevOps busy work.

The Next Frontier: 
Container Orchestration

As container adoption has exploded, so has the adoption of container 
orchestration. This again parallels the virtualization world where compa-
nies like VMWare offer the necessary tools to launch, monitor, create, and 
destroy virtual machines. Much like virtual machines, containers need to 
be monitored and orchestrated to ensure the underlying virtual machines 
are working properly.
 
Container orchestration allows developers to better track, schedule and 
operationalize various containers at scale. If we want to run multiple con-
tainers across multiple servers and virtual machines — which we’ll need 
to do if we’re using microservices — this would require otherwise require 
substantial DevOps resources to make a reality.
 
The many moving parts require us to answer several questions, such as 
when to start the right containers, how to ensure the containers can talk 
to each other, what the storage considerations are, and how to ensure 
high availability across our infrastructure? There’s no wonder the term 
used to do all of this is “container orchestration”. Fortunately, there are 
tools designed to do just this — removing the complexity of orchestrat-
ing our container executions on the underlying virtual machines, much 
like how AWS makes it simple to provision EC2 instances. We just create 
an instance on-demand when needed. We don’t have to worry about the 
infrastructure issues such as what physical hardware it’s going to be 
executed on.



11

Kubernetes: The Future of Infrastructure

Likewise, containers and orchestration tools allow us to start new con-
tainers without having to worry what underlying virtual machine is going 
to take that workload. For example, a container orchestration tools such 
as Kubernetes will do things like decide if a virtual machine is under-
utilized and then decide to run a container on that virtual machine over 
another. 

Kubernetes: Modern Infrastructure for 
Modern Applications

As recent survey data from The New Stack suggests that container 
adoption is the most significant catalyst of orchestration adoption. In 
fact, 60 percent of respondents who’ve deployed containers in produc-
tion report that they also rely on Kubernetes in production to assist with 
orchestration. Another 19 percent of respondents with broad container 
deployments in production were in the initial stages of broad Kuber-
netes adoption.
 
So, what exactly is Kubernetes? Started by Google in 2014, Kubernetes 
is an open source project that focuses on building a robust orchestra-
tion system for running thousands of containers in production. Through 
automation of these processes, Kubernetes can eliminate many of the 
painful manual tasks and infrastructure complexity that often fall on 
DevOps teams to help with the deployment, scaling, and management 
of containerized applications.
 
Kubernetes allows us to not only easily run containers, but also to easily 
run different kinds of workloads alongside our containers. The key to 
the rise of Kubernetes is in its ability to understand that, when you are 
running a system, it’s not just about running a container. Furthermore, 
not every container is the same. A container can be a web app, or it can 
be something that needs to store data persistently.

https://thenewstack.io/


12

Kubernetes: The Future of Infrastructure

Common questions that are addressed by Kubernetes include:

•	 How do we design applications that may consist of many moving 
parts, but can still be easily deployed and orchestrated?

•	 How can we design applications that can be easily moved from one 
cloud to another?

•	 How can we keep storage consistent with multiple instances of an 
application?

•	 How can we ensure load is evenly distributed across all containers?
•	 How can we reuse our existing technical skills and techniques on 

application development and design without deep diving into other 
areas that can slow us down? 

Even with the rise of Kubernetes as the de facto container orchestra-
tion system, there are still some misconceptions on what it is. First off, 
many folks initially do not understand the difference between Docker 
and Kubernetes. Simply put, Docker is a tool used to create containers 
whereas Kubernetes provides the management of those Docker contain-
ers. Another misunderstanding is that Kubernetes is not a platform as 
a service (PaaS), however we can use it as the foundation to develop a 
PaaS if we want.

!" !" !"



13

Kubernetes: The Future of Infrastructure

How Kubernetes Gets Work Done
Within Kubernetes, each node runs several services and a Docker 
engine either in a virtualized environment or a physical server. 
There are two types of nodes: a master node which serves as the 
controller of a given cluster and worker nodes which are used to 
run or host our services represented as containers.
 
Within a worker node, we have the concept of a “pod” which 
represents a unit of work or collection of containers that are 
deployed to the same host. Usually we will run a single container 
or service inside of a pod. However, there are instances where 
it makes sense to run several containers inside the same pod if 
they are tightly coupled together.
 
Kubernetes then connects our pod to your environment and man-
ages our pod, including scaling, rolling deployments and monitor-
ing. Pods have their own IP addresses which means that appli-
cations can easily find our service through Kubernetes service 
discovery.
 
Next up is the notion of a “service”. A service groups together 
logical collections of pods that perform the same function to 
present them as a single entity. When a service is created, all the 
nodes of a cluster are made aware of that new service. What is 
does is provide a single point of access which makes it easier to 
facilitate communications between a collection of pods. The de-
ployment of a service simplifies our container design and makes 
it easier for a user to discover containers.
 
A “label” is an organizational concept that creates a metadata 
tag for Kubernetes resources for easy searchability. This allows 
developers to easily query based on how they are labeled. Since 
a host of Kubernetes functionalities rely on querying the clusters 
for certain resources, the ability to label resources is a critical to 
ensure developer efficiency. Labels are fundamental to how both 
services and replication controllers function.



14

Kubernetes: The Future of Infrastructure

A volume represents a location where containers can access and 
store information. For the application, the volume appears as 
part of the local filesystem. But volumes may be backed by local 
storage, Ceph, Gluster, Elastic Block Storage, and several other 
storage backends.
 
A namespace functions as a grouping mechanism inside of Ku-
bernetes. Services, pods, replication controllers, and volumes can 
easily cooperate within a namespace, but the namespace pro-
vides a degree of isolation from the other parts of the cluster.

A replication controller is designed to maintain as many pods that 
have been requested by a user — allowing for easy scaling. If a 
container goes down, the replication controller will start up an-
other container, ensuring that there are always the correct number 
of replica pods available.

The Container Orchestration Landscape
There are a couple of tools that also provide container orchestration 
capabilities. The two biggest players competing with Kubernetes are 
Docker Swarm and Mesosphere DC/OS. Docker Swarm is an easier-to-
use option, which hits Kubernetes where they receive the most criticism 
around being very complex to deploy and manage.
 
Mesosphere DC/OS is a container orchestrator that was designed for 
big data. It was designed to run containers alongside other workloads 
such as machine learning and big data and offers integrations with 
related tools such as Apache Spark and Apache Cassandra.
 
Overall, Kubernetes is currently the most mature and popular out of 
the three as evidence by the number of community contributors and 
enterprise adoption. The keys to their success has been their ability 
to provide not only the building blocks for launching containers and 
monitoring those containers, but they have also focused their efforts on 
creating different sets of container use cases on top of their platform to 
address different types of advanced workloads. 



15

Kubernetes: The Future of Infrastructure

In Kubernetes for example, we can find native objects, native entities 
within the system that allow us to start a daemon, or to start a 
container, or to start a database. For other solutions, there is no 
distinguishing between containers that are running something that 
could be destroyed at any time.

How Kubernetes is Changing 
Microservices Architectures
The impact of a microservices framework to the development of IT 
solutions in today’s enterprises is clear. At a high level, microservices 
allow for applications to be engineered into smaller, independent 
services, that are not dependent upon a specific coding language. This 
means that when we are building a monolithic application, a microser-
vices architecture allows an engineering organization to decouple 
the application into disparate components that are not dependent on 
each other. Instead, the components can be combined to offer the full 
breadth of functionality of that monolithic application.
 
These components or microservices communicate with each other 
through an API. And since it is not dependent on a programming 
language, we can have multiple teams building various components 
across languages without any compatibility issues. For example, we 
can have a team running a microservice in Ruby with a container run-
ning on Kubernetes communicate seamlessly with a microservice built 
in Python running in a container via Kubernetes.
 
As we adopt a microservices architecture, it’s also important to figure 
out how to monitor across the different services. This is where Ku-
bernetes and its growing ecosystem of tools comes into the picture. 
Kubernetes provides organizations with more options to transition 
from virtual machines to containers. Kubernetes has done a great job 
promoting an ecosystem around itself so that when we use Kubernetes, 
we know that out of the box, there are monitoring tools, CI/CD tools, 
and many platforms all that natively support Kubernetes.

 



16

Kubernetes: The Future of Infrastructure

As a result, the decision to use Kubernetes is not solely based on 
which container orchestration tool to use to further an organization’s 
microservices strategy. What organizations are considering is also 
what the complementary ecosystem of tools looks like. The Kubernetes 
ecosystem offers all the building blocks for everything we need to 
leverage containers to build out a rock solid microservices architecture.

The Future is Bright

Containers are quickly enveloping the world of software development. 
And the momentum behind Kubernetes as the future of infrastructure 
is not slowing down any time soon. It has become the go to container 
orchestrator through its deep expertise, enterprise adoption, and robust 
ecosystem. With a growing number of contributors and IT service 
providers backing the framework, Kubernetes will continue to improve 
and expand upon its functionality, the types of applications it can 
support, and integrations with the overarching ecosystem

 
 



17

Kubernetes: The Future of Infrastructure

About the Author

Marco Palladino is an inventor, software 
developer, and internet entrepreneur based in San 
Francisco, California. He is the co-founder and 
CTO of Kong, the most widely adopted OSS API 
and Microservice gateway. Besides being a core 
maintainer, Marco is currently responsible for the 
design and delivery of the Kong products, while 
also providing the technical thought leadership 
around APIs and Microservices within Kong and 
the external community. Marco was also the co-
founder of Mashape, which started in 2010 and is 
today the largest API marketplace in the world.

 
 



Konghq.com

Kong Inc.
contact@konghq.com 

251 Post St, 2nd Floor
San Francisco, CA 94108
USA


