
 1

From the book “Integration-Ready Architecture
and Design” by Cambridge University Press

Yefim (Jeff) Zhuk

Java and C#: A Saga of Siblings

We will also discuss support of integration-ready and knowledge-connected

environments that allow for writing application scenarios. In spite of the fact that most

examples that support this method are made in Java, similar environments can be created

with other languages. Life outside of Java is not as much fun, but it is still possible.

This appendix provides examples in which the same function is implemented not in

Java but in its easiest replacement – the C–Sharp (C#) language. This lucky child

inherited good manners, elegance, style, and even some clothing from its stepfather while

enjoying its mother’s care and her rich, vast NETwork. Java and C# are similar in their

language structure, functionality, and ideology. Learning from each other and

growing stronger in the healthy competition the siblings perfectly serve the

software world.

Java Virtual Machine and Common Language Runtime.

Java compilation produces a binary code according to the Java language specification.

This binary code is performed on any platform in which a Java Virtual Machine (JVM) is

 2

implemented. The JVM interprets this binary code at run-time, translating the code into

specific platform instructions.

C# compilation (through Visual Studio. NET) can produce the binary code in

Common Intermediate Language (CIL) and save it in a portable execution (PE) file that

can then be managed and executed by the Common Language Runtime (CLR). The CLR,

which Microsoft refers to as a “managed execution environment,” in a way is similar to

JVM. A program compiled for the CLR does not need a language-specific execution

environment and can run on almost any MS Windows system in which CLR is present.

There is one big difference between JVM and CLR. JVM makes Java a

multiplatform language. CLR is a multilingual environment implemented on MS

Windows platforms. Visual Studio .NET supports several programming languages, such

as C, C#, C++, Java, Visual Basic , Practical Extraction and Report Language (Perl), and

Cobol, providing compilation from these languages to CIL, followed by execution by the

CLR.

Garbage Collection and Performance

Java, as well as .NET environments, does not provide too much control over

memory management. Both technologies offer a garbage collector mechanism instead.

The garbage collector periodically looks for objects that have no references in the current

code and frees (deallocates) memory from these objects.

Keep in mind that memory management is a pretty expensive system operation. If

the garbage collection thread starts when your user is waiting for a program’s response,

 3

the program’s response will be visibly delayed and the user might become frustrated with

your program’s performance.

For both (Java and .NET) environments, it is possible to escape this situation, or at

least make it less likely. The solution is simple and can be addressed by two lines that

look almost identical in your Java or C# code.

Assign heavy objects to null as soon as you do not need them:

myHeavyObject = null;

The garbage collector will almost immediately free this object

Force the garbage collector to work at a time that is not critical for the application.

Insert the line below, for example, after your code requests an input/output operation:

System.GC.Collect(); // syntax for C#

Or

System.gc(); // syntax for Java

Java and C# Basics: Keywords from “abstract” till “while”

As you can see from the beginning, the two languages are very close in their syntax

and mentality. About 90% of their keywords are the same in spelling and meaning, and

both Java and C# keywords start with lower-case letters:

abstract – A Java/C# keyword used in a class declaration to specify a class that is not

complete, and cannot have object-instances. An abstract class regularly has some abstract

methods, and serves as a base class for the subclasses, which implement those abstract

methods and can have object-instances.

// Java example

 4

public abstract class Shape {

 // data

 public void draw(); // abstract method with no implementation

 // more code that can include implemented and abstract methods

}

public class Rectangle extends Shape {

 public void draw() {

 // specific implementation of the method

 }

}

// C# example

using System;

public abstract class Shape {

 // data

 public void Draw(); // abstract method with no implementation

 // more code that can include implemented and abstract methods

}

public class Rectangle : Shape {

 public void Draw() {

 // specific implementation of the method

 }

}

// The line below will produce the error:

// Cannot instantiate an object of the abstract class Shape

Shape s = new Shape(); // ERROR line: we try to instantiate the

abstract class

// The line below is valid.

Shape s = new Rectangle(); // OK line, the Rectangle is not an abstract

class

 5

assert – A Java keyword that tests a Boolean expression, for example, assert (a==b)

and throws an AssertionError exception if the specified Boolean expression is false. C#

does not have this keyword.

boolean – A Java keyword. The C# version of this keyword is bool. Java and C# define

this keyword as a type that can hold only one of the literal values true and false.

// Java example

// Some code that fills strings “a” and “b” with some values

// check if strings are equal

// store the result of comparison in the boolean variable

boolean resultOfComparison = a.equals(b);

// C# example

// Some code that fills strings “a” and “b” with some values

// check if strings are equal

// store the result of comparison in the boolean variable

bool resultOfComparison = a.Equals(b); // C# method names start with

upper case

break – A Java/C# keyword that stops the current program block (loop) execution and

passes control to the next block of the program.

Example (valid for Java and C#)

for(;;) { // indefinite loop

 // some code

 if(a < b) { // check if a is less than b

 // at this point the for loop will be interrupted

 break; // pass control to the next block of the program after

the loop

 }

 // more code

 6

}

// the next block of the program

// some code

byte – A Java keyword that represents a sequence of eight bits as a signed integer

number. The C# language defines the corresponding data type as the sbyte.

// Java example

byte a = 13;

// C# example

sbyte a = 13;

case – A Java/C# keyword that follows a conditional switch declaration to define a

block of a program to pass the control to, if the expression specified in the switch

matches the case value.

// Java/C# example:

switch(number) {

 case 1:

 response = “hello”;

 break;

 case 2:

 response = “good bye”;

 break;

}

catch – A Java/C# keyword used in the try/catch block of statements. The catch block

of statements is executed if an exception or run-time error occurs in a preceding try

block.

// Java example:

import java.io.*;

// class definition

 7

// method definition

try { // IO operation can potentially trigger exception

 File inputFile = new File(“myFile.txt”);

 FileReader reader = new FileReader(inputFile);

} catch(Exception e) {

 System.out.println(“ERROR: “ + e);

}

// C# example:

using System;

using System.IO;

// class definition

// method definition

try { // IO operation can potentially trigger exception

 FileStream inputFile = new FileStream(“myFile.txt”, FileMode.Open);

 StreamReader reader = new StreamReader(inputFile);

} catch(Exception e) {

 Console.Write(“ERROR: “ + e);

}

char – A Java/C# keyword that declares a primitive textual data type, a 16-bit, unsigned,

Unicode character.

// Java/C# example:

char c = ‘c’;

continue – A Java/C# keyword used to resume program execution at the end of the

current loop.

// Java/C# example:

int[] numbers = new int[10];

for(int i=0;i < 10; i++) {

 // the first part of the loop

 8

 numbers[i] = i;

 if(a < b) { // check if the value “a” is less than the value “b”

 // at this point the for loop will be interrupted

 continue; // skip the second part of the loop, increase the

value of i

 }

 // the second part of the loop

 numbers[i] = number[i] * 2; // will not be executed if condition

above is met

}

default – A Java/C# keyword used optionally in a switch statement after all of the case

conditions. The default statement will be executed if a case condition does not match the

value of the switch variable.

// Java/C# example:

switch(number) {

 case 1:

 response = “hello”;

 break;

 case 2:

 response = “good bye”;

 break;

 default:

 response = “Please re-enter your data”;

}

do – A Java/C# keyword that declares a loop that will iterate a statement block. The

while keyword at the end of the block can specify the loop exit condition.

// Java/C# example:

int[] numbers = new int[10];

 9

int i = 0;

do {

 // the first part of the loop

 numbers[i] = i++;

} while(i < 10);

double – A Java/C# keyword that defines a floating point number with double

precision.

// Java/C# example:

double preciseNumber = 16.5;

else – A Java/#C keyword used in if-else block statements. When the test expression

specified in the if statement is false, the program will execute the else block statement.

// Java/C# example:

 String response = “”;

 if(a < b) { // check if the value “a” is less than the value “b”

 response = “Add value please.”;

 } else {

 response = “Enough, thank you.”;

 }

extends – A Java keyword used to define a subclass that is derived and inherited from a

base class. One interface can extend another interface by adding more methods. C# uses

the “:” character to define inheritance.

// Java example

public abstract class Shape {

 // data

 public void draw(); // abstract method with no implementation

 // more code that can include implemented and abstract methods

}

 10

public class Rectangle extends Shape {

 public void draw() {

 // specific implementation of the method

 }

}

// C# example

using System;

public abstract class Shape {

 // data

 public void Draw(); // abstract method with no implementation

 // more code that can include implemented and abstract methods

}

public class Rectangle : Shape {

 public void Draw() {

 // specific implementation of the method

 }

}

final – A Java keyword that defines an unchangeable entity. You cannot change a final

variable from its initialized value, cannot extend a final class, or override a final method.

C# uses the sealed keyword to express the same concept.

// Java example:

final private int READ_ONLY_MODE = 9;

// C# example:

sealed private int READ_ONLY_MODE = 9;

finally – A Java/C# keyword that is used in try/catch block statements to ensure

execution of the following block of statements, regardless of whether an Exception, or

run-time error, occurred in the try statement block.

 11

// Java example:

import java.io.*;

// class definition

// method definition

try { // IO operation can potentially trigger exception

 File inputFile = new File(“myFile.txt”);

 FileReader reader = new FileReader(inputFile);

} catch(Exception e) {

 System.out.println(“ERROR: “ + e);

} finally {

 reader.close();

}

// C# example:

using System;

using System.IO;

// class definition

// method definition

try { // IO operation can potentially trigger exception

 FileStream inputFile = new FileStream(“myFile.txt”, FileMode.Open);

 StreamReader reader = new StreamReader(inputFile);

} catch(Exception e) {

 Console.Write(“ERROR: “ + e);

} finally {

 reader.close();

}

float – A Java/C# keyword that defines a floating point number with single precision.

// Java/C# example:

float singlePrecisionNumber = 1.459F;

 12

for – A Java/C# keyword that declares a loop with an optional initial statement. This

statement includes a condition to exit and additional executable statements.

// Java/C# example

int[] numbers = new int[10];

for(int i=0;i < 10; i++) {

 // block of statements

 numbers[i] = i;

}

if – A Java/C# keyword that evaluates a conditional statement, and then executes a

statement block if the result of the evaluation is true.

// Java/C# example:

 String response = “”;

 if(a < b) { // check if the value “a” is less than the value “b”

 response = “Add value please.”;

 }

implements – A Java keyword, an optional part of a class declaration, that specifies

interfaces that are implemented by the class. C# supports the same concept with the “:”

character, as it does for base class–subclass relationships.

// Java example:

public class KnowledgeService implements ServiceScenario {

 // class definition

}

// C# example:

public class KnowledgeService : ServiceScenario {

 // class definition

}

 13

import – A Java keyword that, at the beginning of a source, points to a class from

another package or a whole package of classes that are needed by this class. C# provides

the using keyword for the same purpose.

// Java example:

import java.awt.Toolkit; // a single class

import java.io.*; // a package

// C# example:

using System;

using System.Net;

instanceof – A Java keyword that tests whether the specified run-time object type is an

instance of the specified class in the same evaluation expression. C# uses the is keyword

instead.

// Java example:

if(aShape instanceof Rectangle) {

 // do something

}

// C# example:

if(aShape is Rectangle) {

 // do something

}

interface – This Java/C# keyword defines a collection of method definitions and

constants. A class usually implements an interface.

// Java/C# example:

public interface ServiceScenario {

 // method definitions and abstract methods

 // constants

}

 14

long – This Java/C# keyword defines a 64-bit numeric integer variable.

// Java/C# example:

long preciseNumber = 64000L;

native – This Java keyword may be used in method declarations to specify the method

implemented in a non-Java programming language and located in some library file. The

System.loadLibrary() method loads this library file and makes the native method

available for the Java run-time environment. C# uses the extern keyword to indicate a

non-C# method. An external or native method declaration has no actual implementation

in the current source because it was implemented in a different language. In this regard,

its syntax is similar to abstract methods. The DLLImport attributes point to a library

(Dynamic Link Library) and the parameters needed to invoke the method.

// Java example:

public class ITSNativeExample {

 private native void copyFile (String inputFilename, String

copyFilename);

 static

 {

 System.loadLibrary("myNativeLibrary");

 }

 public static void main(String[] args) {

 ITSNativeExample example = new ITSNativeExample();

 example.copyFile(“source”, “sourceCopy”);

 }

}

// C# example:

[DllImport("KERNEL32.DLL", EntryPoint="CopyFileW", SetLastError=true,

CharSet=CharSet.Unicode, ExactSpelling=true,

 15

CallingConvention=CallingConvention.StdCall)]

public static extern bool CopyFile(String inputFilename, String

copyFilename);

new – A Java/C# keyword that creates a new object-instance of a class.

// Java/C# example:

File f = new File(“notes.txt”);

package – A Java keyword that declares that the current class is a member of a

package, in other words, a library of classes. C# uses the namespace keyword for the

same purpose.

// Java example

package com.its.connector;

import java.io.*;

public class IOMaster {

 // class definition

}

// C# example

namespace ITS.Connector;

using System.IO;

public class IOMaster {

 // class definition

}

private – A Java/C# keyword used in a method or variable declaration to restrict access

to the method or variable to only elements of its own class.

// Java/C# example

private int number;

protected – A Java/C# keyword that provides more than private, but less than public,

access to a method or variable. Protected class members are visible in Java not only to

 16

classes derived from any package but also to any class from the same package. Unlike

Java, C# opens access to protected data and methods only to derived classes but does not

allow access for any other classes, even from the same namespace.

// Java/C# example:

protected Hashtable services;

public – A Java/C# keyword used in a method or variable declaration to open access to

the method or variable to all classes.

// Java/C# example:

public final int READ_ONLY_MODE = 9;

return – A Java/C# keyword that ends the execution of a method. The keyword may be

followed by a value required by the method declaration.

// Java/C# example:

public int calculateNumbers(int a, int b) {

 int c = a+b;

 return c;

}

short – A Java/C# keyword used to define a 16-bit integer.

// Java/C# example:

short scaryNumber = 13;

static – A Java/C# keyword used to define a single copy of a class variable or method

shared by all object-instances of the class. One can access a static variable or static

method even without creating an object of the class.

// Java/C# example:

// In Java case two classes below must be stored in a different files

// with the filenames “Math.java” and “MathActions.java” accordingly

// C# has no restrictions on source filenames

 17

// Unlike Java, C# allows us to keep more than one public class in a

source file

public class Math {

 public static double PI = 1.4591;

 // more code

}

public class MathActions {

 public double getCircleLength(double radius) {

 return 2 * Math.PI * radius;

 }

 // more code

}

strictfp – A Java language keyword-modifier that means strict floating point arithmetic.

This type of modifier may apply to a class, interface, or method to declare an expression

FP-strict. You cannot use the strictfp keyword on constructors or methods within

interfaces, although you can declare a strictfp class to make all constructors and methods

of the class FP-strict.

When is strictfp important? It is needed to guarantee common floating-point

arithmetic across different Java implementations or hardware platforms. The strictfp

keyword in the following example keeps the expression from overflowing and produces a

final result that is within range, even if the price argument is close to the maximum value

of a double (Double.MAX_VALUE).

C# has no adequate keyword and has no need for this concept because the language

runs on “wintel” (Windows–Intel) platforms.

// Java example

 public strictfp class ITSStrictFPExample {

 18

 public double getDoublePrice(double price) {

 double doublePrice = 2.0 * d;

 return doublePrice;

 }

 }

super – A Java keyword used in a subclass to access members of a base class inherited

by the subclass. C# uses the keyword base. You can do the same things in C# with the

base keyword that you can in Java with super, except one: you cannot invoke a base class

constructor this way. Don’t worry; there is a way to invoke a base class constructor in C#

from a subclass. For example:

 // Java example:

public class Child extends Parent {

 public Child () {

 ` // invoke a Parent’s constructor

 super();

 // invoke a method from the Parent class

 super.takeCareOfChildren();

 // do something childish

 }

}

// C# example:

public class Child : Parent {

 // the Child constructor starts with a Parent’s constructor

invocation

 public Child () : base Parent() { // invoke a Parent’s constructor

first

 // invoke a method from the Parent class

 base.takeCareOfChildren();

 19

 // do something childish

 }

}

switch – A Java/C# keyword used to compare an expression or a variable with a value

specified by the case keyword in order to execute a group of statements following the

case if the case value matches the switch expression. The switch expression must be of

type char, byte, short, or int.

// Java/C# example

switch(a+b) {

 case 4:

 response = “you are almost there”;

 break;

 case 5:

 response = “Winner!”;

 break;

 default:

 response = “try again”;

}

synchronized – A Java modifier-keyword that can be applied to a method or a block of

code to ensure mutually exclusive access to specified objects and guarantee that only one

thread at a time executes that code. C# introduces the lock modifier-keyword to express

the same idea.

C#'s System.Threading.Monitor class contains the Enter method, which assures that

it will be the only thread in the block. C# adds more flexibility to the game of threads and

atomic operations. The Monitor class also contains the TryEnter method, which will try

 20

to obtain a lock, perhaps by blocking the piece of code. If this attempt appears to be a

failure, the method indicates the failure to lock the object by returning a false value.

I cannot fail to mention C#’s System.Threading.Interlocked class with its Increment,

Decrement, and Exchange methods, which enable a program to synchronize access to

variables that are shared among several threads.

// Java example:

 public class ITSSyncExample {

 private int treasure;

 public synchronized int getTreasure () {

 return treasure;

 }

 public synchronized void setTreasure (int value) {

 treasure = value;

 }

 }

// C# example:

 public class ITSSyncExample {

 private int treasure;

 public lock int GetTreasure () {

 return treasure;

 }

 public lock void SetTreasure (int value) {

 treasure = value;

 }

 }

// another C# example:

using System;

using System.Threading;

 21

public class ITSAtomicOperationExample {

 public static int treasure = 1;

 public static void AtomicDecrement() {

 Interlocked.Decrement(ref treasure); // atomic operation

 }

}

throw – A Java/C# keyword that allows the programmer to throw (pass) an object of a

class that is inherited from the Throwable class to a calling method. In most cases,

programmers throw an Exception object. This action allows a programmer to escape the

hard work of writing try/catch statements at the moment of truth (when exception

actually happens) and to delegate the responsibility of hunting for the Exception to the

upper-level method. Note that the ServiceNotFoundException extends the Extension

class.

throws – A Java keyword used in method declarations to specify which exceptions are

not handled within the method but are instead passed to the next higher level of the

program. In the example below, the requestService() method throws the

ClassNotFoundException if the class is not found in the classpath, or throws the

ServiceNotFoundException if the class is not the Service type. The requestService()

method declaration includes the throws Exception statement, which covers all possible

exceptions (including the ServiceNotFoundException) that extend the

java.lang.Exception class.

// Java example:

public Object requestService (String serviceName) throws Exception {

 Object service = Class.forName(serviceName).newInstance();

 If(service instanceof Service) {

 22

 throw new ServiceNotFoundException();

 }

 return service;

}

C# does not have a keyword that can be used in a method declaration to announce

that the method can throw an exception. As you can see in the following C# example, the

program still can throw exceptions without any announcements in the method

declaration.

// C# example:

using System;

using System.Reflection;

using System.Collections;

public Object requestService (String serviceName) {

 // load a class from an assembly at runtime

 Type actingClass = Type.GetType(className);

 // activate (instantiate) an object of the type

 Object service = Activator.CreateInstance(actingClass);

 If(!(service is Service)) {

 throw new ServiceNotFoundException();

 }

 return service;

}

transient – A Java keyword indicating that a field is not a part of the serialized form of

an object. This keyword helps us exclude some fields from the serialized version of the

object. Keep in mind that not all Java objects can be serialized. For example, the Thread

object is not serializable. When Java tries to serialize a bigger object that includes

 23

nonserializable objects, the program fails and produces an exception if all nonserializable

objects are not marked transient. There is no such keyword in C#.

// Java example:

public class ServiceProvider {

 private String serviceName; // will be serialized

 private transient ServiceThread; // extends Thread, not

serializable

 // more data

 // more code

}

try – A Java/C# keyword that defines a block of statements inside a method that might

throw a Java language exception. An optional catch block can handle specific exceptions

thrown within the try block. An optional finally block is executed whether or not an

exception is thrown. Java enforces the handling of Exceptions, whereas C# is more liberal

and leaves it up to the programmer whether or not to use try/catch statements in the code.

// Java example:

import java.io.*;

// class definition

// method definition

try { // IO operation can potentially trigger exception

 File inputFile = new File(“myFile.txt”);

 FileReader reader = new FileReader(inputFile);

} catch(Exception e) {

 System.out.println(“ERROR: “ + e);

}

// C# example:

using System;

 24

using System.IO;

// class definition

// method definition

try { // IO operation can potentially trigger exception

 FileStream inputFile = new FileStream(“myFile.txt”, FileMode.Open);

 StreamReader reader = new StreamReader(inputFile);

} catch(Exception e) {

 Console.Write(“ERROR: “ + e);

}

// another C# example:

using System;

using System.IO;

// class definition

// method definition

// no try/catch statements… and C# compiler will “OK” this !

FileStream inputFile = new FileStream(“myFile.txt”, FileMode.Open);

StreamReader reader = new StreamReader(inputFile);

void – A Java/C# keyword used in method declarations to specify that the method does

not return a value.

// Java/C# example:

public void setName(String name) {

 this.name = name;

 // no return value!

}

volatile – A Java/C# keyword used in variable declarations to prohibit reordering

instructions related to accessing such variables. Reordering may appear, for example,

because of compiler optimizations. Declaring a volatile variable forces the compiler to

 25

"take special precautions" against collisions. Concurrent threads will modify the volatile

variable (as in the following example) asynchronously, according to the order specified

by the source. The volatile modifier cannot be used in interface constants or final (sealed

in C#) variables.

// Java/C# example:

public class ITSVolatileDataExample {

 private volatile int counter1, counter2;

 public void setCounters(int counter) {

 counter1 = counter;

 counter2 = counter;

 }

 public void increaseCounters() {

 counter1++;

 counter2++;

 }

 public boolean compareCounters() {

 // should always be true even with multiple concurrent

operations

 return (counter1 == counter2);

 }

}

while – A Java/C# keyword that declares a loop that iterates a programming block. The

while statement specifies a loop exit condition. C# also offers the foreach keyword, a

convenient way to iterate over the elements of an array.

// Java example:

import java.util.*;

public class ITSWhileExample {

 26

 public ITSWhileExample() {

 Hashtable table = Stringer.parse(xml);

 Enumeration keys = table.keys();

 while(keys.hasMoreElements()) {

 String key = (String)keys.nextElement();

 System.out.println(“key=” + key + “ value=” +

table.get(key));

 }

 }

}

// C# example:

using System;

using System.Collections;

namespace ITSCsExamples {

 public class ITSWhileExample {

 public ITSWhileExample(String xml) {

 Hashtable table = Stringer.parse(xml);

 ICollection keys = table.Keys;

 IEnumerator enumerator = keys.GetEnumerator();

 while(enumerator.MoveNext()) {

 String key = (String)enumerator.Current;

 Console.WriteLine("key=" + key + " value=" +

table[key]);

 }

 }

 }

}

// another C# example with the foreach keyword instead of the while

keyword

 27

using System;

using System.Collections;

namespace ITSCsExamples {

 public class ITSForeachExample {

 public ITSForeachExample(String xml) {

 Hashtable table = Stringer.parse(xml);

 ICollection keys = table.Keys;

 foreach(object o in keys) {

 String key = (String)o;

 Console.WriteLine("key=" + key + " value=" +

table[key]);

 }

 }

 }

}

We are done with basic keywords!

With this ammunition, we can climb higher and more difficult peaks on the

programming trail from Java to C#.

From Basics to the Next Level on the Java/C# Programming Trail

You’ve already noticed that every primitive data type in Java has the same name in C#.

We found out that C# accepts almost all Java keywords and adds some of its own. For

example, C# includes unsigned primitive data types such as ushort, uint, and ulong. The

byte primitive in C# is also unsigned, unlike the Java byte. When Java says “byte,” C#

says “sbyte” – signed byte. The following paragraphs discuss some of the differences

between Java and C#; some are only cosmetic.

 28

Exceptions: Java Is Strict, C# Is More Liberal

Java never crashes, it just gives exceptions. Java compilers enforce try/catch statements

in all input/output and network operations. If exceptions are omitted, the compiler

produces error messages. C# has almost exactly same the exception mechanism but

leaves the decision of when to use it up to the programmer.

Class Inheritance: Java Says “Extends” and C# Says “:”

C# inherits its terms of inheritance from C++. When Java says that public class B extends

A – C++, as well as C#, prefers to say that public class B: A.

Interfaces: Java Says “Implements” and C# Still Says “:”

Both Java and C# have interfaces. Java makes a very distinctive interface inheritance

from class inheritance. Java says, “public class D implements C,” and we immediately

understand that C is an interface not a class. C# does not really care. C# can say “public

class D: C” as well as “public class D: B,” where C is an interface and B is a class.

Nevertheless, the meaning of inheritance is the same for both Java and C#. For a

derived class (or a subclass that extends a base class), class inheritance means the benefit

of ownership of all the nonprivate class members of the base class, including data and

methods.

When a class inherits (or as Java rightly says, “implements”) an interface, this class

has an obligation to provide implementations for all interface methods. Java and C# agree

on the function. Both languages allow for a single class inheritance and multiple

interfaces. These inheritance rules are very different from those of C++, which allow for

multiple class inheritance and have no interfaces, just abstract classes.

Java and C# Languages Allow Us to Use True Polymorphism, But…

 29

C#, as well as C++, requires marking methods, which we plan to override in subclasses

as “virtual.” Java assumes that all methods are virtual methods and frees programmers

from placing such markers.

Polymorphism is the ability of objects to appear in multiple forms. For example, an

object of the Shape class can appear as a rectangle or a triangle if the programmer had

provided such inheritance in the design and source code. The benefit of polymorphism is

that one can replace hundreds of lines of procedural code with two lines of object-

oriented polymorphic code. Here is the procedural code below (written in C++ /C#):

Object aShape =

pictureWithShapes.getNextShapeFromThePictureWithManyShapes();

// check a type of an object and invoke a proper method

if(aShape is Rectangle) {

 drawRectangle();

} else if(aShape is Triangle) {

 drawTriangle();

} else if(aShape is Circle) {

 drawCircle();

} // etc., etc, etc.

The number of shapes may vary, and the source code grows with every new shape

added to the picture. Each time a user requires a new shape, the developer has to adjust

the code accordingly. Looks like job security, doesn’t it?

Here is the source code written using polymorphism:

Object aShape =

pictureWithShapes.getNextShapeFromThePictureWithManyShapes();

// Invoke a proper “draw” method defined for a specific subclass

 30

aShape.draw(); // if aShape is a Rectangle it invokes the “draw” of the

Rectangle class

The beauty of polymorphism is that this source code does not grow or change when

we add ten, or even a thousand, more shapes to the picture. The line aShape.draw()

invokes a proper draw() method of a proper shape. A proper method is chosen at run-time

instead of being bound during compilation. C++, as well as C#, calls such methods

virtual and uses the virtual keyword for these cases. Java considers all methods

potentially virtual and omits this keyword.

Polymorphism comes at price: developers must invest the extra time to design it

right, defining a base class with methods (e.g., draw) that may be overridden by derived

classes.

Java Example: A Base Class and Subclasses
/**

* The Shape (base) class definition must be stored in the Shape.java

file

`*/

public class Shape {

 // data description

 protected int size;

 // more data description

 // metods

 public void draw() {

 // some implementation

 }

 // more methods

}

/**

 31

* The Rectangle (child) class definition must be stored in the

Rectangle.java file

*/

public class Rectangle extends Shape {

 // data specific to the Rectangle

 // override methods for the subclass

 public void draw() {

 // method re-definition

 }

 }

/**

* The Triangle (child) class definition must be stored in the

Triangle.java file

*/

public class Triangle extends Shape {

 // data specific to the Triangle

 // override methods for the subclass

 public void draw() {

 // method re-definition

 }

 }

C# Example: A Base Class and Subclasses

Note that C# precisely names virtual and overridden methods.

using System;

public class Shape {

 // data description

 protected int size; // read below about a slight difference on

protected keyword

 32

 // more data

 // metods

 // Note the virtual keyword in the base class method

 public virtual void draw() {

 // some implementation

 }

 // more methods

}

public class Rectangle : Shape {

 // specific to the Rectangle data

 // override methods for the subclass

 public override void draw() {

 // method re-definition

 }

 }

public class Triangle : Shape {

 // specific to the Triangle data

 // override methods for the subclass

 public override void draw() {

 // method re-definition

 }

 }

Packages: Java Says “Package” and C# Says “Namespace”

In both cases, it is an additional dimension of encapsulation. In the same way a class

defines and encapsulates an object type with its data and behavior, a package defines and

encapsulates a set of classes, likely to be reused as a library, that provides a function in a

 33

specific area. For example, base language types and functionality are represented in the

java.lang package in Java and the System package in C#.

Unlike C#, Java Relates Package Names with File System Directory
Names

A package name in Java is the same as the name of the directory in which the classes of

the package are located. The package structure in Java dictates the class file structure. In

C#, namespaces may be located in any directory (folder), regardless of the name of the

particular namespace.

Final (Not Modifiable): Java Says “Final” and C# Says “Sealed”

For example, Java may say “public final int b,” whereas C# would say “public sealed int

b.” In both cases, the variable b that marked such a modifier will not be modified. It is

“final” (I mean “sealed”).

Java Says “Instanceof” and C# Says “Is”

In both cases, the meaning is precisely the same. For example, “if (b instanceof A)” is the

Java way to determine whether the object named b is an instance of class A. The same

question sounds a bit clearer in C#: “if (b is A).”

Java Says “Synchronized” and C# Says “Lock”

Actually, C# may also say “Synchronized,” and in all cases, this is about making data

“thread safe.” This means locking related data so other threads cannot damage them until

a particular task is over. Note that I actually use the term lock to describe this function.

C# (as well as Microsoft in general) consistently looks for simplicity and an intuitive

approach recognized by the user.

Java says “import” when the program uses additional libraries. C# prefers to grab

the keyword using, which Larry Wall introduced in Perl to indicate that a source requires

 34

(uses) additional libraries to run. When a Java program says “import

javax.xml.parsers.*,” C# would say something like “using System.Xml.”

C# has also kept keywords that are familiar to C++ programmers, such as struct,

stackalloc, and sizeof. These keywords provide a bridge not only to C++ but also to C

programmers, allowing them, for example, to create data structures inside and outside

classes, and giving them more freedom in writing non–object-oriented code.

Java and C#, Unlike C++, Disallow Global Methods

All methods must belong to some class. It is harder but still achievable to write non–

object-oriented spaghetti code in Java or C#, even though whatever one writes in Java or

C#, it must be a set of classes.

There are textbooks that provide examples of Java or C# code encapsulated in a

single main method that can sometimes be very long. Such examples still have a lot of

value for an instructor in the second part of his or her presentation on “good and bad

programming practices.”

A good object-oriented program describes object data at the beginning of the class

definition; provides main behavior patterns in class methods that “get,” “set,” and change

the data; and initiates data in their class constructors. The main method usually includes a

couple of lines that create the main object and invoke one of its methods. For example, in

Java we would write:

public static void main(String[] args) {

 A a = new A();

 a.go();

}

The C# source code looks very similar:

 35

public static void Main(String[] args) {

 A a = new A();

 a.go();

}

The only difference is the main method name.

Java Says “main,” C# Says “Main.”

Method Naming Conventions Are Different for Java and C#.

Java style recommends that method names begin with lower-case letters. This is a part of

the Java naming convention. The naming convention for C# method names is different

from Java’s, but (not surprisingly) the same as C++’s. Method names in C#/C++ start

with a capital letter.

Java and C# Both Have the String Class with the Same Spelling and
Behavior, But …

Java says “String.” C# says “String,” too. However, C# also allows us to use “string,”

beginning with lower-case s. In Java, we deal with the java.lang.String class, and in C#,

the System.String class. In both cases, it is an immutable (nonchangeable) object. Each

operation on a string creates a new string copy that is returned as a result of the operation.

Java and C# Both Say “Object,” But C# Also Allows Us to Use
“object”

We will discuss two major functions of the programming environment that supports the

writing of application scenarios: handling XML and providing direct call connections to a

knowledge engine and regular services with the reflection mechanism.

Different defaults for data and method access

 36

Java and C# may be silent about data and method access, but their silent defaults are

different. Here is a Java example:

package com.its.examples;

public class JavaExample {

 String text = “I am visible to everyone from my folder.”;

 // more code

}

A class member with the default access (e.g., string text) is visible to all the classes

located in the same package. Here is an example of access to the string text from another

class in the same package:

package com.its.examples;

public class AnotherJavaExample {

 // method that access the text variable from the JavaExample class

 public void printThisText() {

 JavaExample example = new JavaExample();

 System.out.println(example.text); // will print the text

 }

}

Default access in C#, as well as C++, is private. If one omits an access modifier on a

variable or a method in C#/C++, such a class member is considered private, visible only

inside the same class. Here is a C# example:

namespase ITS.Examples;

using System;

public class CsExample {

 String text = “I am private!. Only members of this class can access

me.”;

 // more code

 37

 // the getString() publicmethod provides access to the private

(default) text

 public String getText() {

 return text;

 }

}

A class member with default access (e.g., string text) is visible to all classes located

in the same package. Here is an example of access to the string text from another class.

namespase ITS.Examples;

using System;

public class AnotherCsExample {

 // method that access the text variable from the JavaExample class

 public void printThisText() {

 CsExample example = new CsExample();

 Console.WriteLine(example.getText()); // will print the text

 }

}

Java and C# both say “protected” to allow derived classes to access parent class

members, but Java’s protected is more generic. Protected class members are visible in

Java, not only to derived classes from any package but also to any class from the same

package. C# is more specific and consistent than C++ in its definition of protected access.

A protected member in C# can only be accessed by member methods in that class or

member methods in derived classes, but is not accessible by any other classes.

C# has two more specific access modifiers that can open wider access for class

members. The internal modifier opens access to a class member from other classes in the

same assembly. What is assembly? If you are a Java programmer, think of assembly as a

 38

Java Archive (JAR) file. The assembly is a set of classes usually stored as *.EXE or

*.DLL files, unlike Java JARs that are stored in ZIP format.

C# also has the combined internal protected access modifier that makes a member

visible to derived classes or classes that are in the same assembly.

Networking and File Access in Java and C#

Java, as well as C#, uses streams for data communications. Working with files or

networks, we establish input and/or output streams between communication points. The

endpoint of communications can be, for example, a file or a socket.

Read and Write Files in Java

Fig. A1.1 presents the readBinFile() method of the JavaIOExample class. The

readBinFile() method reads a file from a file system or from the Internet. The method

starts with a simple check to see if a file name is actually a URL. In this case, the

fetchURL() method will be called to retrieve data from the Internet. Otherwise (the file

name is not a URL), the method creates a file object based on the file name and uses the

length() method of the File class to get the size of the file in bytes. Then, the

readBinFile() method creates an input stream to the input file and the while loop reads

the data into the data byte array.

[Fig.A1-1]

Fig. A1.2 shows the writeBinFile() method of the JavaIOExample class. The first

method presented in the figure is just a convenience wrapper that can accept only two

arguments: a file name and bytes to write. The real work is done in the following method

that, besides the file name and the array of bytes, expects the offset and actual number of

bytes of the array that will be written into an output file.

 39

[Fig.A1-2]

Fig. A1.3 displays the copyTextFile() method, which reads an input file and immediately

writes data into an output file.

[Fig.A1-3]

In all cases, we create a file object and establish a stream to the object. For example:

 File file=new File(filename);

 FileOutputStream out=new FileOutputStream(file);

We can streamline these two operations into one line:

 FileOutputStream out=new FileOutputStream(new

File(filename));

Then, we use the stream object to read or write data. For example:

 out.write(iData, iOffset, iSize);

Then, we eventually close the stream:

 out.close();

Read and Write Files in C#

Fig. A1.4 demonstrates a C# example of copying an input file into an output file. The

method CopyTextFile() of the CsIOExample class looks like a sibling of the method

copyTextFile() of the JavaIOExample.

 [Fig.A1-4]

We create an input file and output file objects. Then, we attach streams to the files,

and we use a loop to read-write (copy) data.

You can see that the Java and C# source codes are very similar. In the C# code, we

go through the same steps, and even the method names are almost the same.

 40

Retrieve Data from the Web in Java

Fig. A1.5 presents the fetchURL() method of the JavaIOExample class. The fetchURL()

method creates a URLConnection object based on the URL provided as an argument to

the method. The endpoint is not a file but a URLConnection.

 [Fig.A1-5]

The following steps are the same as those for reading files. Based on the endpoint

(in this case, the URLConnection object), we create an input stream and read data from

this stream using the readFromStream() helper method.

When we deal with a network object, it is harder to define the object size upfront as

we did while reading file objects. Reading files, we were able to allocate a fixed-size byte

array.

In the readFromStream() method we create a ByteArrayOutputStream instead and

use this stream to write data directly into memory. This is a very convenient way to use

memory to accumulate data.

The while loop that reads data from the Internet is finished when there is nothing

more to read. At this point, we take the tempBuffer stream object in which we

accumulated data and convert it into a regular byte array.

Done!

Retrieve Data from the Web in C#

Fig. A1.6 presents the FetchURL() method of the CsIOExample class. The FetchURL()

method creates a WebClient object and uses the DownloadData() method of the

WebClient class to download the data from the net based on the URL provided as an

argument to the method.

 [Fig.A1-6]

 41

Java and C# Sockets

Server Socket Listener in Java

Fig. A1.7 presents an example of a server socket listener on the local network. This is a

simple example of a server socket in which the server daemon is waiting for client

requests and starts a service thread for each client. The constructor takes a port number

argument and creates a server socket.

[Fig.A1-7]

The run() method starts the while loop listening for client service requests and starts

a service thread for each client. The setListening() method is a convenient helper that can

set the listening flag that serves as a condition for the while loop. The main() method

gives the class the test; it creates a server socket daemon object on port number 11000

and starts the listening thread. Remember that according to Java specifications,

thread.start() invokes the run() method of the thread.

The ServiceThreadExample serves an XML-based service

request

Fig. A1.8 shows the ServiceThreadExample. This is a service thread example that

serves network clients connected over TCP/IP sockets. The service thread takes a client

socket as an argument in its constructor.

[Fig.A1-8]

The run() method of the ServiceThreadExample retrieves a service request and

parameters from the input stream attached to the socket. Then, the run() method passes

the client request to the performService() method of the ServiceConnector class. The

 42

clientRequest line may be present in XML format or as a method signature. Here is an

example of the XML format:

 <act service="ITSeMailClient" action="sendMail"

 to=”jeff.zhuk@javaschool.com” subject=”hi!” body=”How are you?” />

And an example of the method signature:

ITSeMailClient.sendMail("jeff.zhuk@javaschool.com","hi!.", "How are

you?”);

The performService() method of the ServiceConnector class parses the client request

string and performs exactly the same operation in both cases. Also in both cases, the

ITSeMailClient class is loaded and its object instance is created. Then, the method

sendMail() of this class is called with three parameters.

The ServiceConnector class has a registry of objects, which helps load new classes

only for the first service call. Then, the same object may be reused for subsequent service

requests. The setPerform()method is a convenient helper that can set the perform flag that

serves as a condition for the while loop.

A Server Socket Listener in C#

Fig. A1.9 displays an example of a server socket listener in C#. The

CsServerSocketExample class is a simple server socket example. The constructor of the

CsServerSocketExample takes a port number argument and creates a server socket.

[Fig.A1-9]

The Start() method starts the while loop listening for client service requests and uses

the PerformService() method of the ServiceConnector class to serve clients. (Wait for the

Reflection topic to consider the ServiceConnector class in C#). A slight difference in

mailto:jeff.zhuk@javaschool.com

 43

handling data with C# sockets is that the Receive() method of the Socket class in C#

creates streams internally, on the fly.

We use the Encoding.ASCII.GetString() method to convert the byte array into a

string.

This example closes the socket after a single service request, which is completely

optional. In some cases, it is preferable to continue client-server communications beyond

a single service request.

The Main() method gives the class the test. The method creates a server socket

daemon object on port number 11000 and invokes the Start() method with its while loop

that listens to client requests.

As you can see, C# and Java socket handling is very similar.

A Client Socket Example in Java

Fig. A1.10 presents the JavaClientSocket class that can work with both server daemons:

the JavaServerSocketExample implemented in Java and the CsServerSocketExample

implemented in C#.

[Fig.A1-10]

The constructor establishes a socket connection to a server using two arguments: the

host name and the port number.

The getService() method requests a service and returns a service response. The

method takes a service request as a string argument and converts the string into a byte

array. Then, the method sends the serviceRequest as the byte array to the server.

The getService() method reuses the readFromStream() method provided in the

JavaIOExample class to receive the response from the server. The method closes the

client socket streams; however, this action is optional and depends on the client-server

 44

protocol. In some cases, it is preferable to continue client-server communications beyond

a single service request.

The getService() method receives the server response as an array of bytes and

immediately converts the array into a string just to return the string to a calling procedure.

The main() method serves as the testing mechanism. We start the main() method by

setting basic parameters, such as a host name, port number, and service request. The

main() method creates the JavaClientSocket object and invokes the getService() method

on this object. We end up with the main() method displaying the server response on the

screen.

More Ways to Create Sockets in C#

C# offers several socket classes, so there is more than one way to create sockets in C#.

For example, we can use the TcpListener class (part of the System.Net.Sockets

namespace) to create a server listener:

 TcpListener tcpListener = new TcpListener(11000); //

port number

 tcpListener.Start(); // start listening!

 // Accept requested connections

 Socket clientSocketCounterpart =

tcpListener.AcceptSocket();

C# offers input and output stream classes, such as NetworkStream, StreamWriter, and

StreamReader, for reading and writing data to and from sockets.

Here is an example of C# code establishing streams to read and write text data.

if (socketForClient.Connected) {

 45

 // creat generic network stream a base for input/output

stream

 NetworkStream networkStream =

 new NetworkStream(clientSocketCounterpart);

 // create output stream

 StreamWriter streamWriter = new StreamWriter(networkStream);

 // create input stream

 StreamReader streamReader = new StreamReader(networkStream);

 // read text line from the network

 string line = streamReader.ReadLine();

 // write text line to the network

 streamWriter.WriteLine(line);

}

Throughout this book, we consistently used XML-based scenarios to invoke needed

services. We also used them in the JavaServerSocketExample, as well as in the

CsServerSocketExample. In both cases, we referred to the ServerConnector class that

performed a needed service for us.

We need to find a proper class, discover the methods in the class, and according to

an XML scenario, invoke the proper methods at run-time. This ability is called reflection.

There are two packages, java.lang.ref and java.lang.reflect, that help us perform this

magic in Java.

Perform Services Using Java Reflection

Fig. A1.11 shows the performService() and getInstance() methods of the

ServiceConnector class which uses the power of Java Reflection.

[Fig.A1-11]

 46

The performService() method determines whether the service request is an XML

string. For example:

 <act service="ITSeMailClient" action="sendMail"

 to="jeff.zhuk@javaschool.com" subject="hi!" body="How are

you?" />

In this case, the performService() method uses the XML parser to create a table of service

parameters that includes a class name, a method name, and other relevant parameters.

After retrieving service parameters from the XML string, the performService() method

calls the act() method of the ServiceConnector class to actually perform the service. The

Stringer.parse() method can be found in Appendix 3.

The service request can also have a form of method signature. For example:

 ITSeMailClient.sendMail("jeff.zhuk@javaschool.com", "hi!.", "How

are you?");

Such a request is parsed by the performAction() method. In both cases, an instance of the

ServiceConnector class is used to process the service request.

The getInstance() method of the ServiceConnector class is a static method. This

method helps to create (if necessary) and support a single instance of the

ServiceConnector class per application. The method implements the Singleton design

pattern. The implementation is based on the instance static variable. The method creates

this object if the object has not been created yet (object value equals null).

Why is it important to follow the Singleton design pattern and limit the service

connector by a single instance? The service connector keeps service objects in the table

(Hashtable) of acting objects. It is important to invoke methods on the same objects in

 47

their current state instead of creating new objects upon new service requests. Later in this

appendix, we will see examples of service object reuse and service invocations.

Fig. A1.12 displays the act() method of the ServiceConnector class. The act()

method uses a default acting class if a class name is not provided in the service

parameters. The method checks to see if it is necessary to change the current acting object

and changes it (if necessary) using the changeActingClass() method. Then, the act()

method examines the parameter objects and tries to identify parameter types or classes

using the object.getClass() method.

[Fig.A1-12]

Now we are armed with information about the acting object, acting method name,

and method parameter types. This should be enough to find a proper method of the class

using the powerful reflection method getMethod() of the java.lang.Class class.

Unfortunately, the Class.getMethod() has a problem: parameter types are often

subclasses of required parameter classes. For example, the readFromStream() method of

the JavaIOExample class provided in Fig. A1.6 expects the InputStream parameter. This

method can still accept any of the subclasses of the InputStream, such as the

FileInputStream, ByteArrayInputStream, and FilterInputStream.

Fig. A1.6 also shows the fetchURL() method that invokes the readFromStream

method with the DataInputStream argument. This is perfectly alright for the run-time

method invocation. Unfortunately, the Class.getMethod() can find the method only if we

pass the exact parameter types. The Class.getMethod() throws an exception if we try to

find the method that has the name readFromStream and may take the DataInputStream

argument.

 48

To work around this problem, I wrote another version of the getMethod() presented

in Fig. A1.13. If the first attempt to find a proper method with the Class.getMethod() fails

the second time, this version will be used instead.

[Fig.A1-13]

The getMethod() helps us work around a common problem in the Class.getMethod()

that expects exact parameter type matches. Exact matches rarely happen in real programs.

Parameter types are often subclasses of required argument classes.

The version of the getMethod() presented in Fig. A1. uses the more sensitive Java

Reflection mechanism offered by the Class.isAssignableFrom() method while checking

for method compatibility. The Class.isAssignableFrom() method returns true not only on

the exact match of a class but also on its subclasses.

Perform Services Using Reflection in C#

C# is also very familiar with reflection features. The System.Reflection namespace

provides classes such as MethodInfo, and ParameterInfo, similar to Java classes.

There is a slight difference between reflection in Java and in C#. Java can load the

class file from a targeted classpath or resource file. The classpath may include JAR files

that Java can uncompress on the fly.

Reflection in C# is provided at the assembly level, whereas reflection in Java is done

at the class level. Assemblies are typically stored in DLLs or EXE files, and the

programmer must know the proper file name, with the DLL or executable assembly, in

which the class file is located.

Examples of the ServiceConnector class implementation in C# are presented in Figs.

A1.14 through A1.16. The ServiceConnector class invokes a selected method on a

 49

selected class instance. The ServiceConnector can actually play not only its own (object)

role but as a good actor, can also play objects of any (existing) type. If necessary, the

ServiceConnector loads a new class at run-time. The ServiceConnector also has a registry

in which it keeps (and reuses) all object-actors.

The beginning of the ServiceConnector class is shown in Fig. A1.14. The

ServiceConnector class members include the actingClass, actingObject, and currently

performed method objects. The table of actingObjects (Hashtable) serves as a registry to

keep and reuse actor-objects that once were called onstage.

 [Fig.A1-14]

The default constructor sets a current class and current object as current actors. The

other constructor takes a class name as an argument and uses the changeActingClass()

method to set this particular class as the current object-actor.

Fig. A1.15 shows the act() method of the ServiceConnector class. The act() method

uses its arguments (class name, method name, and method parameters) to find a proper

object and a method with the reflection mechanism and to invoke this method on the

selected object.

 [Fig.A1-15]

We find that the code in this section is very similar to that in Java implementation.

Two key lines look exactly like Java lines, except for the method name capitalization.

 // find the method

 method = actingClass.GetMethod(methodName, classes);

 // invoke the method

 result = method.Invoke(actingObject, parameters);

Fig. A1.16 displays the rest of the ServiceConnector example in C#.

 50

[Fig.A1-16]

The changeActingClass() method takes a class name as the argument and tries to

bring an object of this type onto the stage. The method uses its arguments (class name,

method name, and method parameters) to find the proper object and method with the

reflection mechanism and to invoke this method on the selected object. If this does not

return true, the changeActingClass() method looks into the table of actors, and if an

object of the proper type is there, it just reuses this object.

Real work needs to be done if a fresh, new class type is needed to perform a service.

This time, the magic of reflection does its best in the following two lines:

 // load a class from an assembly at runtime

 actingClass = Type.GetType(className);

 // activate (instantiate) an object of the type

 actingObject = Activator.CreateInstance(actingClass

);

The next thing the program does is register the object in the table of acting objects:

 // register the object

 actingObjects.Add(className, actingObject);

Handling XML Scenarios with C#

Microsoft .NET (besides being a marketing term) supports XML with a set of classes

collected in several namespaces.

The System.Xml namespace contains major XML classes to read and write XML

documents. There are four reader classes: XmlReader, XmlTextReader,

XmlValidatingReader, and XmlNodeReader. There are also two writer classes –

XmlWriter and XmlTextWriter – plus several more classes helping to navigate through

nodes and perform other tasks.

 51

The System.Xml.Schema namespace includes classes such as XmlSchema,

XmlSchemaAll, XmlSchemaXPath, and XmlSchemaType, that work with XML schemas.

The System.Xml.Serialization namespace contains classes responsible for

serialization of C# objects into XML documents.

The System.Xml.XPath namespace contains XPathDocument, XPathExression,

XPathNavigator, and XpathNodeIterator classes that use XPath specification to navigate

though XML documents.

The System.Xml.Xsl namespace is responsible for XSL/T transformations.

As you can see, the .NET side of the development community is well armed for

XML processing. There is a great support in .NET (as well as in the Java world) for

Simple API (application program interface) for XML (SAX) and Document Object

Model (DOM) XML processing.

If we want to proceed with a thin solution (minimum package-namespaces), we can

use a source similar to Stringer.parse() (see Appendix 3). We can even directly translate

this Java code into C# using the Microsoft Java Language Conversion Assistant (JLCA)

[1], which helps convert existing Java language source code into C#.

The ParseXML.cpp source written in C++ (see Appendix 3) may be considered for

the limited resources of wireless devices.

Graphical User Interfaces in Java and C#

C# programs use MS Windows calls to create screen widgets. Windows Forms are a new

style of MS Windows application built around the System.WinForms namespace.

Windows programmers can use a unified Windows Forms API from any language

(including C#) supported by MS Visual Studio .NET. While the Windows Forms solution

 52

supports a unified graphical user interface (GUI) API through multiple languages

targeting a single (Windows) platform, Java focuses on multiple platforms that support

the Java language.

The Java GUI is based on the Abstract Window Toolkit (java.awt) package that

provides basic graphic abstractions and primitives. The java.awt package makes a unified

GUI for all platforms and serves as a base for rich graphic components built with the set

of Swing (javax.swing) packages.

An alternative GUI is provided in Java with the Standard Widget Toolkit (SWT).

SWT uses a Java native interface (JNI) to C to invoke the native operating system

graphics widgets from Java code. SWT enforces one-to-one mapping between Java native

methods and operating system calls, which makes a very significant difference in the

appearance and performance of graphics.

SWT is a pure Java code (although not from Sun Microsystems) widely accepted by

the Java development community and supported by IBM and other organizations under

the eclipse.org [2] umbrella.

We will briefly look into the most commonly used traditional Java graphics with
java.awt (heavyweight, with native interface code) and javax.swing (lightweight,
pure Java code that sits on the top of AWT) packages.

There are three basic elements in the java.awt package:

1. Graphic attributes, such as color and font, are defined.

2. All graphic components, such as buttons, lists, checkboxes, and other widgets,

have graphic attributes. The crucial point is some components are actually

containers that may contain other components.

 53

3. Layout managers can easily control the complexity of different container-

component layouts.

Fig. A1.17 provides a simple example of a Java applet. The Java applet uses its

network capabilities to load an image from the network and draws this image along with

several lines of Java poetry.

 [Fig.A1-17]

A Web browser invokes the init() method as soon as the applet is loaded. Then, the

browser refreshes the screen by calling the paint() method of the applet. More precisely,

the browser calls the invisible update() method, which in turn, schedules the execution of

the paint() method. These are the mechanics of painting Java components.

An applet or an application can draw different items on the java.awt.Component

using the paint(Graphics) method. Images, lines, circles, polygons, or any other graphic

items are drawn on a Graphics instance. The system (in the applet’s case, it is the

browser) passes the graphics instance to the paint(Graphics) method.

The paint(Graphics) method might be called several times throughout the life of an

applet or application. The system allocates a thread and gives this thread a specific time

in which to accomplish its painting job. If the drawing is complicated, this time frame

may not be long enough and the paint() method may be called several times for a single

screen refresh, which often causes a flickering effect.

When does the system call the paint() method? If an applet changes location on the

screen or any time it needs to be refreshed (redrawn), paint(Graphics) is called.

Programmers do not directly call paint(Graphics). To have java.awt.Component paint

 54

itself, programmers call repaint(), which calls update(Graphics), which in turn calls

paint(Graphics).

Be aware that update(Graphics) assumes that the component background is not

clear, so it clears the background first. If you don't want to waste time clearing the

background each time you want to paint, it's a good idea to override update(Graphics)

with your own code that only calls the paint(Graphics) method. Fig. A1.18 projects the

image created by the Web page that contains this applet.

[Fig.A1-18]

Commonly Used Layout Managers

The three most commonly used layout managers are the FlowLayout, BorderLayout, and

GridLayout.

The FlowLayout is the default layout manager for the simplest Java container, the

Panel class. The FlowLayout has three justifications: FlowLayout.CENTER,

FlowLayout.LEFT, and FlowLayout.RIGHT. FlowLayout.CENTER is the default setting.

Fig. A1.19 illustrates an example of the FlowLayout manager.

[Fig.A1-19]

The Java applet serves two roles: networking service and graphical component. The

Java Applet class graphically represents java.awt.Panel. The default layout for the Panel

is the FlowLayout.

The FlowLayout places components next to each other into one line. When the

components fill the width of a container, the FlowLayout starts a new row. Fields in the

FlowLayout keep their sizes (i.e., do not grow) when the user stretches the window.

 55

Fig. A1.20 illustrates the use of the BorderLayout. The BorderLayout (default for

the Frame and Dialog classes) has five regions: North, South, East, West, and Center.

When a user resizes the window with the BorderLayout, the North and South regions

grow horizontally while the East and West regions grow vertically. The Center region

grows in both directions. It is not a requirement to fill all five fields of the BorderLayout

(see Fig. A1.20).

[Fig.A1-20]

The sequences of the strings in Figs. A1.19 and A1.20 can be combined into four

lines written by a Java student:

The training programs are just great!

I have elected one.

My valued time I dedicate

To Java from the Sun.

Fig. A1.21 displays an example of code that helps find the cheapest airfare from

Denver to several destinations. This example greatly simplifies the backend operations

required for such a search; it focuses on the graphics and event handling instead.

 [Fig.A1-21]

The buttons are placed into the frame with the GridLayout. The number of regions

for a GridLayout is specified in the constructor by rows and columns. In this case, we

specified three rows with two columns for the layout. The GridLayout makes all the

regions the same size, equal to the largest cell.

Creating a frame makes this applet less dependable on the Web browser. The frame

stays on the screen while the user continues to browse other pages.

 56

The Tickets class definition includes the promise to implement the ActionListener

interface. This simply means that ActionEvent handling happens in this class and this

class must provide the actionPerformed() method implementation.

When any of the destination buttons is pressed, a button label is changed to show the

corresponding fixed price. Figs. A1.22 and A1.23 show this applet at work.

[Fig.A1-22]

[Fig.A1-23]

From a Hard-Coded to a Flexible Set of Reusable Services

Several simple changes can turn this hard-coded GUI example into a set of reusable

services.

 First, we separate the applet code from the basic GUI that appears in the frame.

 Then, we pass service names and related actions in an XML-based scenario with

a set of parameters.

 Finally, we use the ServiceConnector.performService() method to perform the

necessary services.

Fig. A1.24 displays the WebContainer applet class. The WebContainer source code

is very short. The single init() method retrieves the URL parameter from the applet tag on

the Web page that points to the WebContainer applet.

 [Fig.A1-24]

Here is an example of the applet tag:

<applet code=”WebContainer” width=”1” height=”1”>

 <parameter name=”scenario” value=”ServiceSetExample.xml” />

</applet>

 57

The init() method uses the JavaIOExample.fetchURL() method to fetch the scenario

file that must be located on the same server as the applet and the original Web page. This

is one of the applet’s restrictions: it can network only to its own server-host.

The last line of the init() method initializes the ServiceFrame object and passes to

the object the scenario that was just retrieved two lines above. Fig. A1.25 displays an

example of the scenario.

[Fig.A1-25]

The scenario includes two lines that define the dimensions of the grid layout for the

ServiceFrame object with the number of rows and columns, and a set of services to

perform. Each service has a service name and a service instruction that includes class

name, method name, and parameters when needed.

The ServiceFrame class begins in Fig. A1.26. This class extends the java.awt.Frame

and promises to implement the ActionListener interface.

 [Fig.A1-26]

The constructor of the ServiceFrame uses the Stringer.parse() method to process the

scenario string and transform the string into a table (Hashtable) of service parameters.

The constructor creates a grid of service buttons using the number of rows and columns

retrieved from the service parameters. A panel with the grid of service buttons is placed

in the “Center” of the frame. We set the bottom of the frame (the “South”) with the text

area in which we expect to display service responses if any.

The set of services fills the services table that was prepared by the Stringer.parse()

method. We create a set of buttons and label them according to the names provided in the

services table.

 58

The ServiceFrame resizes itself with the pack() method, which makes it necessarily

small, makes its components visible, and makes it ready to rock and roll.

Fig. A1.27 shows the actionPerformed() method, which handles button clicks, and

the main() method. The actionPerformed() method is an event handler that is called by

the system whenever a button is pressed. Note that when we created the buttons, we

added an action listener to every button, pointing to THIS object as event handler.

 [Fig.A1-27]

When any button is pressed, the action event is generated by the system and passed

to the actionPerformed() method. The very first thing we need to do is recognize which

button was pressed. This is an easy task. The getActionCommand() method of the action

event object returns us a button label. We use the label to retrieve the service instruction

from the table of services using the label as the key.

The next line performs the service using the ServiceConnector.performService()

method. Then, the program changes the background color of the pressed button and sends

a service response to the text area.

The main() method can test the class performance. We provide a URL to an XML

scenario as the argument in the main() method. The method reads the scenario and passes

the XML string to the ServiceFrame object. The right scenario is all this class needs to

perform.

Java GUI with Swing Classes: The ServiceBrowser Example

Java Swing classes offer a big set of rich graphical widgets with very powerful

functionality. I provide only one example to demonstrate some of these features.

 59

The JEditorPane class is the focus of the following example. The JEditorPane is a

Web browser emulator. Yes! This single class is as capable of loading and showing Web

pages as almost any real browser. The JEditorPane does not perform JavaScript

functions, and it is very picky about HTML code correctness, unlike most browsers,

which forgive Web designers for small errors.

The JEditorPane class can also display documents with rich text format (RTF)

prepared by Microsoft Word, Open Office, or Adobe tools.

The code example displayed below in Fig.A1.28Author: In Fig. 1.28?-thanks loads

the Web page with images, text, and hyperlinks that look like regular HTML links. Some

of these links are not usual. A regular Web browser cannot interpret them, but our code

will exceed the browser’s capacities. We write the link handler method, and we can

greatly extend the browser’s functionality.

 [Fig.A1-28]

The ServiceBrowser class (Fig. 1.28) is an example of the javax.swing.JEditorPane

in action. Like the java.awt.Frame, the javax.swing.JFrame is the main window in Swing

GUI. The ServiceBrowser class extends the JFrame and implements the

javax.swing.event.HyperlinkListener. This means that the class must include the

hyperlinkUpdate() method to handle link events.

Two GUI components cover all our needs: the JEditorPane, in which we plan to

display the documents, and the JScrollPane, which provides scrolling skills for our

browser. We place the JEditorPane into the JScrollPane. Now they can work together as

a team.

 60

We add another JEditorPane component to the top of the window (North). This

component contains a Web page with control-links.

The constructor takes the initial URLs as parameters and creates a GUI in several

lines. We set the JEditorPane objects display and controls. Then we create a

ContentPane object to hold all the JFrame components. We place the objects in the

center and at the top of the content pane, respectively.

There are several lines of calculations in which we set the component sizes based on

the client screen resolution surveyed by the Toolkit.getDefaultToolkit().getScreenSize()

method.

The constructor uses the image URL to load the logo icon and set the icon on the

frame, to the left of the frame title. The program sets the title of the frame to the initial

URL of the page that will be displayed first. The link event handler will continue this

tradition, providing the current URL as the frame title each time a new link is activated.

The constructor finishes its GUI work by enabling the link handler, setting the

display and controls pages, and finally, making the window visible. Note that the single

setPage() method of the JEditorPane loads the page from the Internet or a local computer

and displays the page.

The last lines of the constructor register the main objects at the ServiceConnector

registry. Later on, we will be able to order these objects to change their behavior by

providing the proper link instructions. For example, with the instructions below, we can

change the mode of the display window:

javax.swing.JEditorPane.setContentMode(“text/plain”)

The link with this instruction will look like this:

 61

<a href=service://

javax.swing.JEditorPane.setContentMode(“text/plain”)>Plain Text

Fig. A1.29 shows the link handler. The hyperlinkUpdate() method is the required

implementation of the HyperlinkListener interface. The method considers the type of

event first. The HTMLFrameHyperlinkEvent is a notification about the link action. We

can use this notification to retrieve the document for some analysis, but this is not the

primary function of this method.

 [Fig.A1-29]

The primary function of the handleEvent() method is as a regular HyperlinkEvent

that happens when a user clicks on a link. The program tries to retrieve a link URL and

act upon the URL instructions. If this is a regular link that points to some web of local

files, the program loads such a file and shows its content in the display window.

The most important case is when the instruction starts with the service:// string. This

means that this is not a regular URL schema like http://, file://, or ftp://. The service:// is

the beginning of our service instruction that can be interpreted and performed by the

ServiceConnector.performService() method. The result of the operation may be a URL to

a document, a formatted Web page, an RTF, or a plain text document. The program looks

into all these cases and acts accordingly.

Whenever a user changes the page, the method stores the current URL and the

previous URL, which might be used to support the Back function.

This is the core of the service browser. We can add more methods to the service

browser to support the controls at the top of the frame. For example, we can have controls

to set the display to editable mode. We can also add the Back control to the controls.html

page and support this link with the back() method provided in Fig.30 below.

 62

Fig. A1.30 displays these two helper methods and the main() method to test the

browser. The back() method sets the page to a previous URL stored one click before. The

setEditable() method changes the mode of the display from read-only to read-and-write,

and back.

[Fig.A1-30]

Fig. A1.31 shows an example of the controls.html file. There are only three control-

links provided in the example, but this page can be easily extended with links to provide

specific services based, for example, on the Open Office package.

 [Fig.A1-31]

The ServiceBrowser’s functionality is not limited by the functions embedded in the

source code of this class. Unlike a lot of applications and browsers, the ServiceBrowser is

just an engine able to perform any integration-ready service. The presentation layer of the

ServiceBrowser is also not defined by the source code. The screens and controls are

driven by HTML descriptions.

Imaging the XML browser driven by XML scenarios. The scenarios would describe

GUI as well as program functionality. Describing GUI in XML is not a terribly new idea.

Developers from Netscape (currently AOL) submitted their XUL (XML User interface

Language) specification [3] via the Mozilla Organization.

XUL describes the typical dialog controls, as well as widgets such as toolbars, trees,

progress bars, and menus. Unlike HTML, which defines a single-page document, XUL

describes the contents of an entire window, which could contain several Web pages.

 63

There are existing implementations, such as Thinlet [4], that use XUL to define GUI

widgets. There is even the XUL visual editor program “Theodore” [5] by Wolf Paulus,

which ensures the generation of valid XUL descriptors.

The language of XML application scenarios discussed in this book can complement

and integrate GUI descriptions (done with XUL) with extended service definitions.

Building GUI in C# with Windows Forms

Windows Forms [6] are a new style of application built around classes in the .NET

Framework class library's System.Windows.Forms namespace (much richer than the

Windows API).

Windows Forms streamline the programming model, providing a consistent API.

For example, Microsoft Foundation Classes or the Windows API does not allow you to

apply a style that is meaningful only at creation time to an existing window. Windows

Forms take care of this problem by quietly destroying the window and recreating it with

the specified style.

Windows Forms leverage several technologies, including a common application

framework and managed execution environment. Programmers can use Windows Forms

while connecting to XML Web services and building rich, data-aware applications with

any of the languages supporting .NET development tools.

So, what would be an appropriate definition for Windows Forms?

1. Windows GUI APIs?

2. A library of classes?

3. A set of tools?

4. All of the above?

 64

If you picked the last item, you win!

It is not necessary to install the full .NET environment to develop the Windows

Forms GUI, but you need at least the .NET Framework distribution.

What is the programming model of Windows Forms? Traditionally, starting from

Visual Basic, the term forms means top-level rectangular windows that can serve as

dialog boxes, standard windows, or multiple document interface (MDI) windows.

Forms can present information for a user and accept the user’s data. Forms are

objects, instances of classes that define their properties and methods. The properties are

translated at run-time into visible attributes, and the methods define user interface

behavior.

Programmers prefer to use Windows Forms Designer to create and modify forms,

although Code Editor lets you enjoy manual code writing.

The main starting points for writing GUI applications with Windows Forms are two

classes of the System.Windows.Forms namespace: the

System.Windows.Forms.Application and the System.Windows.Forms.Form. The static

method Run of the System.Windows.Forms.Application displays a window and runs

message events loop.

The System.Windows.Forms.Form class defines the window properties and

behavior. This component (similar to the java.awt.Component class) handles user

interface with virtual methods such as OnPaint, OnMouseDown, OnKeyDown, and

OnClosing. Programmers write their code to override these default methods (that in most

cases are empty placeholders) and provide actual handlers.

 65

The next layer of Windows Forms classes represents numerous controls such as:

System.Windows.Forms.Menu

 System.Windows.Forms.Button

 System.Windows.Forms.TextBox

 System.Windows.Forms.ListView

 System.Windows.Forms.FileDialog

 System.Windows.Forms.MonthCalendar

 System.Windows.Forms.ColorDialog

 System.Windows.Forms.PrintDialog

 System.Windows.Forms.FontDialog, etc.

Similar controls (although not all) can be found in the java.awt or javax.swing

packages. There are several controls in Windows Forms that I miss in Java. For example,

the System.Windows.Forms.LinkLabel is a hyperlink control. You can use the rich

facilities of javax.swing.JEditorPane (see the ServiceBrowser, Figs. A1.27 and Fig.

A1.28), or you can write your own class (I did it once then found out that M. Berthou

created one [7]) to add this control to the java.awt building blocks.

Fig. A1.32 shows a simple example of a Windows Forms application. You can save

this code in any file – for example, example1.cs – and compile it with the command line

in MS DOS windows.

csc example1.cs

 [Fig.A1-32]

You will find a new file, example1.exe, in the same folder. This is your Windows

Forms application. Double click on the file and see a window with the proud title

“Windows Forms Example.”

 66

You can add more components to this application. For example: You wamt to add a

button with the label Submit. You create the button and define its properties. Then, you

can add the button to other controls on the form:

System.Windows.Forms.Button submitButton = new

System.Windows.Forms.Button();

submitButton.Name = "submitButton"; // reference name

// place the button at this location on the form

submitButton.Location = new System.Drawing.Point(20, 40);

// define a style of the button

submitButton.FlatStyle = System.Windows.Forms.FlatStyle.System;

// provide button’s size, make it well visible (can resize itself by

default)

submitButton.Size = new System.Drawing.Size(100, 30);

// here is the label on the button

submitButton.Text = "Submit";

// Add to the form

this.Controls.Add(submitButton);

This code looks very similar to Java code, but it is not exactly the same.

Unified Terms to Define GUI: XUL and Views XML

The XML-based User Interface is a good candidate for such direction. Windows Forms

deliver unified GUI terms for Microsoft languages. Providing XML-based APIs to

Windows Forms can produce a great cocktail that even comes in a beautiful glass.

A group of developers from the University of Pretoria and the University of Victoria

(sponsored by Microsoft Research) is working on the VIEWS (Vendor Independent

Event and Windowing Systems) project [8], which deserves a special attention.

 67

The group created the Views XML specification 1.0 (similar to XUL) to describe

Windows Forms in XML terms. The Views XML specification was designed with

emphasis on the user’s convenience in writing XML descriptions. The specification, for

example, does not require double quotes around attribute values and is not case sensitive

regarding tags and attribute names.

The group provided an implementation of the concept in both C# and Java with the

class name View. (You may find the View class is similar in some way to the Java Thinlet

implementation). The View class constructor takes a long string of user interface

definition in XML format as an argument and creates the GUI based on this definition.

The C# version of the View class uses Windows Forms supported by the .NET

Framework. The Java version is implemented with Swing in SDK 1.4.

Fig. A1.33 shows an example of creating an object of the View class, which accepts

an XML-based screen description. The XML string describes the screen in a manner

similar to HTML: from the top down and from left to right.

 [Fig.A1-33]

The “vertical” tags encapsulate several items or several groups of items from the

top. The “horizontal” tags describe several items or several groups of items on the same

vertical level. Fig. A1.34 shows the screen displayed by the View object regardless of

Java or C# implementation.

[Fig.A1-34]

Programmers can access information within the controls and handle events with C#

or Java code using View object methods, such as GetText().

 68

JDK 1.5 Makes Programming Simpler

Comparing Java to C Sharp we found C Sharp more liberal on several occasions. JDK 1.5

known as “Tiger” makes a step in the right direction to easy some rules. [1]

JDK1.5 makes easy strict rules that distinguish objects from primitives. You remember

that all Collections like ArrayList, Hashtable, and etc. can only deal with objects.

We could not store a primitive value in collections without wrapping this value in the

object.

For example:

Vector v = new Vector();

v.add(5); // JDK1.4 would give a compiler ERROR because “5” is not an object but an

integer

You have to wrap this primitive value into an Integer object.

Vector v = new Vector();

Integer wrapper = new Integer(5);

v.add(wrapper);

Then, you have another problem when you want to retrieve your primitive value back

from the collections.

int primitive = v.elementAt(0); // JDK1.4 would give you a compiler ERROR

You would need to add couple more lines to satisfy JDK1.4.

Integer wrapper = (Integer) v.elementAt(0);

int primitive = wrapper.intValue();

JDK1.5 removed the problem by introducing autoboxing and unboxing concepts when

compiler takes care about casting and wrapping primitives to objects.

Vector v = new Vector();

v.addElement(5); // is OK!!!

……

int primitive = v.elementAt(0); // OK!!!

Java 1.5 introduced a new base type "enum" similar to the C/C++ enum that supports

Typesafe enum [2] design pattern. This new keyword allows us to define a class that

 69

represents a single element of the enumerated type without providing a public constructor

for the class.

Although enum represents integer values it is more informative as we operate with

names. They (enum) are still classes and objects; we can add to them fields and methods

and put them into collections.

In the example below 12 months are presented with the enum type.

public enum Months {

 // The constant declarations below invoke a constructor

 // The constructor like January(1) passes the month number
 January(1), February(2), March(3), April(4), May(5), June(6), July(7), August(8),

September(9), October(10), November(11), December(12);

 private final int month;

 Months (int month) {

 this.month = month;

 }

 public int getMonth() {

 return month;

 }

 }

In the other example we define four seasons (plus Rainy Season that acts as default in

some places). We do not bother ourselves with numbering the seasons. The compiler will

do the job. The next element's value is always bigger than the value of the previous

element. You can see a great feature that shows superiority of Java enum in comparison

to its C/C++ siblings. We can use Java enum in switch statements. (Remember that

switch statements only take integers. Java compiler is smart enough to represent enum as

integer when necessary.

 // The Seasons are conveniently defined with no constructors

 public enum Seasons {Winter, Spring, Summer, Fall, RainySeason}

 // Note that unlike its C/C++ siblings Java enum can be used in switch statements

 public static Seasons getMonthLength (Months month) {

 switch (month) {

 case Months.December:

 case Months.January:

 case Months.February: return Seasons.Winter;

 case Months.March:

 case Months.April:

 case Months.May: return Seasons.Spring;

 70

 case Months.June:

 case Months.July:

 case Months.August: return Seasons.Summer;

 case Months.September:

 case Months.October:

 case Months.November: return Seasons.Fall;

 default: return Seasons. RainySeason;

 }

 }

 }

One of the greatest features added by the JDK1.5 is called Generics. What it is all about?

There are several sides of generics but all sides look attractive to us, developers, as they

make our code more robust and even simpler.

Here is the example from the past (JDK1.4).

// count characters in the collection of strings

public int countCharacters(Collection words) {

 int counter = 0;

 for (Iterator i = words.iterator(); i.hasNext();) {

 String s = (String) i.next();

 counter += s.length();

 }

 return counter;

}

The code will compile OK but at run-time can crash if the collection passed to the

method above is not the collection of strings.

Here is the code with that can be provided for JDK1.5. The code below includes generics.

It takes full control on situation and even looks shorter!

// Generics ensure that a passed collection must be a collection of strings.

// If we try to pass to this method a different type of collection –

// We face a compiler ERROR instead – this is much better than run-time exception

public int countCharacters(Collection<String> words) {

 int counter = 0;

 for (Iterator<String> i = words.iterator(); i.hasNext();) {

 counter += i.next().length();

 }

 return counter;

}

 71

Even this beautiful source can be enhanced with one more JDK1.5 feature that is named

as “enhanced for”. This feature makes easier writing for loops. It is very similar to Perl’s

foreach keyword. We basically say “for all elements in the collection” and we can skip

the iteration line. Here is the source example.

// Note the “:” character in the enhanced for loop

public int countCharacters(Collection<String> words) {

 int counter = 0;

 for (String s : words) { // read it as “for all string s in collection of words”

 counter += s.length();

 }

 return counter;

}

Summary

This appendix is a reference for Java and C# programming. Every keyword and every

concept is illustrated with one or more examples. The focus of this reference is on object-

oriented concepts, reflection, and the approach to GUI development.

The target audience includes (but is not limited to) students and programmers who

would like to follow an integration-ready strategy and recreate and extend “integrated

with knowledge” systems that can run application scenarios in Java and/or C#. These

systems enable invocation of existing services, simplify service descriptions, decrease

coding efforts, and integrate parts of application definitions into XML-based application

scenarios.

The application scenarios explained in this book extend XML-based GUI

descriptions with references to grammar rules and direct access to services (not

necessarily Web services, but any available services), including knowledge engine

queries and assertions.

Exercises

 72

1. Add several lines of Java code that will allow you to close the frame in Fig.

A1.21. (Hint: the class should implement WindowListener.)

2. Research and list the similarities and differences between the Thinlet and VIEWS

projects.

References

1. The Microsoft Java Language Conversion Assistant:

http://msdn.microsoft.com/vstudio/downloads/tools/jlca/default.asp.

2. Eclipse.org: http://www.eclipse.org.

3. XML User Interface Language 1.0: http://www.mozilla.org/projects/xul/xul.html.

4. Thinlet: http://Thinlet.com.

5. The Theodore XUL Editor: http://www.carlsbadcubes.com/theodore/.

6. Windows Forms:

http://msdn.microsoft.com/vstudio/techinfo/articles/clients/winforms.asp.

7. Berthou, M. The linkLabel.java:

http://www.javaside.com/zip/srcs/linkLabel_java.html.

8. VIEWS or XGUI: http://www.cs.up.ac.za/~jbishop/rotor/.

http://msdn.microsoft.com/vstudio/downloads/tools/jlca/default.asp
http://www.eclipse.org/
http://www.mozilla.org/projects/xul/xul.html
http://thinlet.com/
http://www.carlsbadcubes.com/theodore/
http://msdn.microsoft.com/vstudio/techinfo/articles/clients/winforms.asp
http://www.javaside.com/zip/srcs/linkLabel_java.html
http://www.cs.up.ac.za/~jbishop/rotor/

