

© ITS, Inc. dean@JavaSchool.com

JEE Web Applications
Jeff Zhuk

From the book and beyond

“Integration-Ready
Architecture and Design”

Cambridge University Press

Software Engineering With

 XML, Java, .NET,
Wireless,

Speech and Knowledge

Technologies

© ITS, Inc. dean@JavaSchool.com

 Services
 Facility management with Geo Info System

 Instant Share Voice and Video Service

 Distributed Knowledge Framework

 Partner Integration Framework

 Document Handling Services

 Business Data Integrator

 Remote Control Service

VoiceXML/SALT/SRS Clients
WinCE/TabletPC/J2SE/J2ME/Applets/Apps/JWS

Integration
with other
systems

Service
Registry
Centers

XML
Rules
Descriptor

Natural
Language
Interpreter

Knowledge
Engine

Wireless or PDA Clients: 802.11; Bluetooth;WiFi; etc

HTML/WML/cHTML/XML ClientsSRS

WAP I-mode
Knowledge
Engine

Data and Service Valuation

Enterprise Services and
Presentation Layers

© ITS, Inc. dean@JavaSchool.com

Client
Container

Browser or
mail client

Client
Device

With
Embedded
Application

Multi-tier Enterprise Architecture

802.11

Bluetooth

Mail Server

Web Server

ASP.NET

Or

JSP/Servlet

Dynamic
Content
Engines

Service
Container

(App
Server)

Message
Queue

Business
Services

Connectors

Device and
data drivers

XML rules
and
descriptors

Data and
Remote
Systems

LDAP
RDBMS
DS, NS

Control
Devices

Legacy
Apps

http://ipserve.com/go/web/to/partners/ipserve/briefip.html

© ITS, Inc. dean@JavaSchool.com

A multi-tier Open Enterprise architecture
• A multi-tier open Java based enterprise architecture is built as a set of extensible

services-frameworks with ability to add/customize services run-time
• Tier 1 – Client requests services via XML based service API
- Client types: 1) partner application running on a workstation, 2)Web Browser with

JavaTM Applet , 3)Wireless device with embedded WML browser or VoiceXML
interpreter, 4)Java card technology device, etc.

- Tier 2 – Web Container with J2EE Servlet and JSP engines where servlet is
responsible for session tracking and request distribution, and JSPs provide
presentation layer back to the client. Tier 2 can be considered as a
communication tier that in the case of HTTP serves as a Web Container

- Tier 3 – worker beans providing services.
Worker beans can be (not necessary) implemented as EJBs to gain advantage
of security and transaction monitoring services provided by EJB containers.

- Tier 4 – Connectors to Data, Remote Systems, etc. (XML API to Tier5)

- Unified JNDI based approach is used for data integration describing data types,
rules, and structure with XML descriptors. A master controller with XML based
API is created to describe a set of operations on device controllers.

- Tier 5 – Data Sources, Production Control Systems, end terminals, etc.

© ITS, Inc. dean@JavaSchool.com

Java Enterprise Services
Naming and Directory
– allows programs to locate services and components through
the Java Naming and Directory Interface (JNDI) API

Authentication
– enforces security by requiring users to log in

HTTP
– enables Web browsers to access servlets and JavaServer
Pages (JSP) files

EJB
– allows clients to invoke methods on enterprise beans

JMS
- enables asynchronous processing with messaging services

© ITS, Inc. dean@JavaSchool.com

JEE Implementations of
Model-View-Controller (MVC) Design Pattern
Web Applications before MVC:
-Common Gateway Interface (CGI)

MVC Model 1 (Page-centric Architecture) JSP-to-JSP

MVC Model 2 (Servlet-centric Architecture

Open Source Web application frameworks: Struts and
more

Standard-based Web application framework: Java
Server Faces (JSR-127)

© ITS, Inc. dean@JavaSchool.com

Common Gateway Interface (CGI)
A Mix of Presentation and Business Logics

With Generous Use of Resources

Client(s)

Web
Browser

Http
Post/Get

Web Server

IIS

Apache

Etc.

Database

Submit
Form

Request

Display
Page

Response

Each client request fires up a program (process) on the server side that
performs business logic and sends a dynamic HTML page back to the client

On the server side

VB/Perl/Java/exe

Program that
performs business
logics, works with
data, and
generates HTML

Print
“<html>”

© ITS, Inc. dean@JavaSchool.com

MVC Model 1
Page-Centric Architecture

Client(s)

Web
Browser

Http
Post/Get

Web Tier

JSPs / ASPs

with

to execute
business
logic and

provide data
access

Database

Submit
Form

Request

Display
Page

Response

Interrelated JSP pages provide presentation, control, and business processing
with scriplets and embedded Java beans encouraging “spaghetti” code in JSP.

Embedded
Java Beans

Other
Enterprise
Applications

<html>

<% a= b + c %>

© ITS, Inc. dean@JavaSchool.com

MVC Model 2 - Better Separation of
Business and Presentation Layers

Client(s)

Web
Browser

Http
Post/Get

Web Tier

JSPs are

forming

The View
Database

Submit
Form

Request

Display
Page

Response

Servlet and JSP work together. Servlet and related classes, like Struts Action,
control application logic and interact with services while JSP forms the presentation

Model
Java Beans

Service Layer

Other
Enterprise
Applications

Web Tier

Servlet

Controller

© ITS, Inc. dean@JavaSchool.com

Current Enterprise Web Applications
with Struts and other Frameworks

Client
Request:

Service=
“mail”

Action=
“get”

Type= “wml”

ASCX or
Servlet
Controller

ASP/JSP View

Multiple Layers:

wml html vxml etc.

Model Components: Service Beans or Actions

Persistent
Data

DataService Semantics
Frameworks by ITS, Inc.

Complementary To

Struts and Portlets

App Server

EJBs
EJBs

EJBs

MVC Design Pattern (J2EE/ASP.Net)
Multiple Presentation Factories

(HTML/WML/etc.)

Struts

Spring

Hibernate
AJAX

© ITS, Inc. dean@JavaSchool.com

Self-Healing Well Packaged
Applications

Use existing frameworks to:

- Deliver basic operation statistics

- Monitor application health

- Validate application data

- Prepare application for work
 (Leave only DDL in your release
notes, use app services to prepare
data)
- Provide testing facilities

Provide standard ways for data exchange

Provide standard ways to configure applications

© ITS, Inc. dean@JavaSchool.com

e-Business e-Government e-Training

Common Portal Use Cases

User Profile

Change User Roles
Policy Maker

Admin

Change Business Rules

SearchMember

Customize

Registration

Content
Management

RegistrarUser

Login

Knowledgebase

Collaboration
Content Management

Authoring, Update, Versioning
Forms, Permits, Applications
Scheduling events/facilities
Workflow Routing
Planning and Approval
Document/Photo Imaging
Task Tracking and Reporting
Data and Service Evaluation

Search

Search for Data and Services
GIS (Maps and Routes)
Linking Related Cases
Content-based Subscription

Collaboration

Email
Conferencing
Instant Messaging
Privilege-based Data/Service Sharing

Access Rules:

Accessibility
Single Sign-On
Role based Access
User Privacy Control
Device Independence

Recognize Common
Problems and Use

Design Patterns

© ITS, Inc. dean@JavaSchool.com

Summary/Repetition
Web Application Architectures

• 1 No MVC = CGI

• 2 ?

• 3 ?

• 4 ?

• 5 ?

© ITS, Inc. dean@JavaSchool.com

Summary/Repetition
Web Application Architectures

• 1 No MVC = CGI

• 2 MVC Model 1 – Page-Centric Architecture

• 3 ?

• 4 ?

• 5 ?

© ITS, Inc. dean@JavaSchool.com

Summary/Repetition
Web Application Architectures

• 1 No MVC = CGI

• 2 MVC Model 1 – Page-Centric Architecture

• 3 MVC Model 2 - Better Separation of Business and
Presentation Layers

• 4 ?

• 5 ?

© ITS, Inc. dean@JavaSchool.com

Summary/Repetition
Web Application Architectures

• 1 No MVC = CGI

• 2 MVC Model 1 – Page-Centric Architecture

• 3 MVC Model 2 - Better Separation of Business and
Presentation Layers

• 4 Struts and Other Frameworks reduce generic code

• 5 ?

© ITS, Inc. dean@JavaSchool.com

Summary/Repetition
Web Application

Architectures
• 1 No MVC = CGI

• 2 MVC Model 1 – Page-Centric Architecture

• 3 MVC Model 2 - Better Separation of Business and
Presentation Layers

• 4 Struts and Other Frameworks reduce generic code

• 5 Self-Healing Well Packaged Applications

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

