
Knowledge is power.
(Ipsa Scientia Potestas Est)
Sir Francis Bacon (1561 - 1626), Meditations

From the book “Integration-Ready Architecture and Design” on Software and Knowledge Engineering

 An Introduction to Knowledge Technologies

By Jeff Zhuk

Ontology is a controlled, hierarchical vocabulary for describing a knowledge

system or knowledge-handling methods.

This chapter is an introduction to a development paradigm in which software

and knowledge engineering are integrated. As always happens on the other side

of an economic crisis, a new set of skills will be required. A growing number of

developers will actively use the knowledge technologies reviewed in this chapter.

The chapter starts by talking about fundamental standards that currently

bridge ontology and engineering: the Resource Description Framework (RDF),

the Semantic Web language DAML+OIL (DARPA Agent Markup Language +

Ontology Inference Layer), Topic Maps concepts, and their XML Topic Maps

(XTM) standard knowledge exchange format.

We’ll continue with a brief overview of data mining methods with coming

Java support and eventually discuss the challenging topic of generic knowledge,

not just knowledge of a specific business domain, expressed in natural language.

The final part of the chapter describes OpenCyc, probably the most exciting

knowledge instrument today, and provides examples of using the CycL language

and OpenCyc engine in distributed knowledge systems.

http://javaschool.com/about/publications.html
http://www.quotationspage.com/quotes/Sir_Francis_Bacon/

I hope this chapter does not take you, my reader, by surprise. Integration-

ready systems and collaborative engineering need and help create knowledge

technologies, which creates a very healthy cycle.

A customer with a computer and computer skills is still the main target for

computerized services today. Even when searching Goggle.com for a specific

topic, you need to know the specific terms of the industry this topic belongs to.

This requirement prevents or hinders information exchange between different

knowledge domains. The computer illiterate part of the population is almost

completely excluded from the computerized service client base. There also are

people with disabilities who are prevented from using computers in a general

manner.

In addition, there is a “gray area” of the population who have limited

computer skills but no desire to use these skills. These individuals have learned

from their experience that computers are too stupid and cannot serve them well

in their specific fields today. Service providers have a great reason to employ

knowledge technologies and drastically increase clientele for their services.

Knowledge technologies help to create a bridge from natural language to a

specific service request. For example, the Semantic Web is the representation of

data on the World Wide Web based on the RDF. Another direction where

knowledge technologies can be helpful is the area of speech recognition systems

(SRSs). SRSs are extremely narrow in their business domains today. Current

SRSs lack general knowledge representation; they direct customers into the

“select one of the options” routine.

There are many methods for representing knowledge, including written

documents, text files, and databases. Below, I review a few technologies used in

this vast area: The Semantic Web (an umbrella for many other technologies),

XML, RDF, Topic Maps, frames and slots methods, the CycL language, and

others.

The Semantic Web is a vision for the future of the Web, in which information

is given explicit meaning, making it easier for machines to automatically process

and integrate information available on the Web. The Semantic Web will build on

XML's ability to define customized tagging schemes and RDF's flexible approach

to representing data. The next element required for the Semantic Web is a Web

ontology language, which can formally describe the semantics of classes and

properties, used in web documents. In order for machines to perform useful

reasoning tasks on these documents, the language must go beyond the basic

semantics of RDF Schema. [1]

Ontology

Knowledge-handling methods and terms are often called ontology. Ontology

formally defines a common set of terms that are used to describe and represent

a domain of knowledge. Automated tools to power advanced services related to

knowledge management can use ontology (knowledge-handling methods and

terms). Ontology is critical for applications that want to search across or merge

information from diverse communities.

Ontology can provide terminology for describing content with rules or

assertions and inferences that define terms using other terms. Good search

engines include some ontology definitions provided for specific business areas.

We can call them specific ontologies.

For example, a specific ontology can be created to define group

memberships. This ontology might include terms such as user, group, member,

and role. This ontology could also include definitions such as groups have

members, and every group member has a role.

A search system that uses such ontology would take initial key data entered

by a user and look for additional data required by the rules. Such a system can

obtain search results superior to conventional search systems. Of course, this

superiority relies on additional data provided with content annotations. Content

providers must be in the game.

It is important that ontologies are publicly available and different data

sources can commit to the same ontology for shared meaning. In addition,

ontologies should be able to extend other ontologies in order to provide

additional definitions.

XML document type definitions (DTDs) and XML Schemas are sufficient for

exchanging data between parties who have detailed agreements, specifications,

and an existing and stable vocabulary. At the same time, they have no semantic

mechanisms to understand changing or new XML vocabularies.

RDF and RDF Schema
RDF and RDF Schema [2] begin to approach this problem by allowing simple

semantics to be associated with terms. With RDF Schema, one can define

classes that may have multiple subclasses and superclasses; one can also

define properties, which may have subproperties, domains, and ranges. In this

sense, RDF Schema is a simple ontology language.

However, in order to achieve interoperation between numerous,

autonomously developed and managed schemas, richer semantics are needed.

There is a need for instruments capable of sharing the knowledge across the

boundaries of notation, grammar, knowledge domains, and natural language.

In RDF, each schema has its own namespace identified by a Uniform

Resource Identifier (URI). The URI identifies any content presented by text, an

image, or a sound file. A typical example of a URI is http://IPServe.com.

Each term in the RDF Schema is identified by combining the schema's URI

with the term's ID. Any resource that uses this URI references the term as

defined in that schema. However, RDF is unclear on the definition of a term that

has partial definitions in multiple schemas. The specification appears to assume

that the definition is the union of all descriptions that use the same identifier,

regardless of source.

DAML+OIL: A Semantic Markup Language for Web Resources

DAML [3] was created as part of a research program started in August 2000 by

the Defense Advanced Research Projects Agency (DARPA), a U.S.

governmental organization. OIL is an initiative funded by the European Union

Programme for Information Society Technologies as part of its research projects.

The marriage of DAML and OIL produced a semantic markup language for

Web resources. The language is based on RDF and RDF Schema. DAML+OIL

extends RDF capabilities with richer modeling primitives.

http://IPServe.com/

A few words about RDF:

An RDF document is a collection of assertions that typically begins with the

tag <rdf:RDF and several obligatory RDF declarations that refer document

prefixes (e.g., xsd:) to existing specifications. Each topmost RDF element is the

subject of a sentence. The next level of enclosed elements represent verb/object

pairs for this sentence. For example:

<Class ID="GroupAccount">

 <subClassOf resource="#Account"/>

</Class>

This means that the GroupAccount class is a subclass of the Account class.

The DAML example provided below is in effect an RDF document that

includes DAML extensions. DAML extensions are easily recognizable because

they have <daml: prefixes. The example begins with an RDF start tag including

several namespace declarations:

<rdf:RDF

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd ="http://www.w3.org/2000/10/XMLSchema#"

xmlns:daml="http://www.w3.org/2001/10/daml+oil#"

xmlns:dex ="http://www.w3.org/TR/2001/NOTE-daml+oil walkthru-20011218/daml+oil-

ex#"

xmlns:exd ="http://www.w3.org/TR/2001/NOTE-daml+oil-walkthru-20011218/daml+oil-ex-

dt#"

xmlns ="http://www.w3.org/TR/2001/NOTE-daml+oil-walkthru-20011218/daml+oil-ex#"

>

XML namespace declarations (the xmlns above) relate prefixes to their

specifications. Therefore, in this document, the rdf: prefix should be understood

as a reference to http://www.w3.org/1999/02/22-rdf-syntax-ns#. This is a

conventional RDF declaration appearing at the beginning of almost every RDF

document.

The second and third declarations make similar statements about rdfs: and

xsd: prefixes that refer to the RDF Schema and XML Schema datatype

namespaces.

The following declarations provide references for daml:, dex:, and exd:

prefixes. These again are conventional DAML+OIL declarations.

The final declaration states that unprefixed elements refer to

http://www.w3.org/TR/2001/NOTE-daml+oil-walkthru-20011218/daml+oil-ex# that

is, the location of this document itself.

After these initial declarations, we can indicate that this RDF document is an

ontology.

<daml:Ontology rdf:about="Collaborative Engineering">

Before we can describe our topic, we need to define some basic types.

DAML, like object-oriented languages, does this by giving a name for a class.

<daml:Class rdf:ID="Account">

This assertion tells us that there is a class named Account. It is possible for

others to refer to the definition of Account that we give here.

 <rdfs:label>Account</rdfs:label>

 <rdfs:comment>

 This class of Accounts provides a base for User and Group Accounts.

 </rdfs:comment>

</daml:Class>

We introduced a label for graphical representations of RDF, as well as a

comment, and we closed the class definition.

There are two types of accounts, Group and User.

<daml:Class rdf:ID="GroupAccount">

 <rdfs:subClassOf rdf:resource="#Account"/>

</daml:Class>

The subClassOf element indicates that its subject – GroupAccount – is a

subclass of its object – the resource identified by #Account.

<daml:Class rdf:ID="UserAccount">

 <rdfs:subClassOf rdf:resource="#Account"/>

 <daml:disjointWith rdf:resource="#GroupAccount"/>

</daml:Class>

The disjointWith element is a DAML extension of rdfs. This element tells us

that no object can be both a UserAccount and GroupAccount in this ontology.

We can define DAML+OIL properties that relate objects to other objects or

those that relate objects to datatype values.

We define the hasGroupMembership relation that will be used to connect a

User to Group accounts.

<daml:ObjectProperty rdf:ID="hasGroupMembership">

Then we say that hasGroupMembership is a property that applies to

UserAccount.

 <rdfs:domain rdf:resource="#UserAccount"/>

Like the domain, we also declare the range of the hasGroupMembership

relation. Below, we define that the value of the hasGroupMembership property

can only be GroupAccount.

 <rdfs:range rdf:resource="#GroupAccount"/>

We then close the ObjectProperty tag.

</daml:ObjectProperty>

Above, we effectively declared that every user could have memberships in

one or more groups.

In a similar way, we can define DatatypeProperty.

The more sophisticated example below defines some restrictions on

GroupAccount. For objects that have the type GroupAccount (subclasses), we

provide property constraints. We not only specify a maximum, minimum, or

precise number of values for that property, but also enforce the type that these

property values must have:

<daml:Class rdf:about="#GroupAccount">

 <rdfs:comment>

Only one administrator is allowed in the group, and it must be a group

member.

 </rdfs:comment>

 <rdfs:subClassOf>

 <daml:Restriction daml:maxCardinalityQ="1">

 <daml:onProperty rdf:resource="#hasAdministrator"/>

 <daml:hasClassQ rdf:resource="#GroupMember"/>

 </daml:Restriction>

 </rdfs:subClassOf>

</daml:Class>

This states that a GroupAccount may have at most one administrator that is

a GroupMember.

After we define some basic types, we can create objects of these types.

<UserAccount rdf:ID="Alex.Nozik">

 <loginName>alex.nozik</loginName>

</UserAccount>

Finally, we end the document with the rdf:RDF closing element.

</rdf:RDF>

We can see that the RDF-based approach is very scalable and can be

applied to many knowledge areas. At the same time, however, it is not rich

enough to deal with natural language flexibility.

Topic Maps

Topic Maps is the ISO 13250 standard that defines a model and interchange

syntax for knowledge representation with topics, occurrences of topics, and

relationships – “associations” – between topics. Topic Maps can be compared to

the “GPS (Global Positioning System) of the information universe,” a base

technology for knowledge representation and knowledge management.

Topic Maps modeling started in 1991 with the initial goal of merging

information. The idea was to find a formal way for capturing information models.

The scope was later broadened to multiple applications providing access to

information based on a model of the knowledge it contains.

The key concepts of Topic Maps modeling are:

• Topic (and topic type)

• Occurrence of the topic (and occurrence role)

• Association of the topic (and association type)

• Scope of the topic

A topic can be any “thing” whatsoever – a person, an entity, a concept, really

anything – regardless of whether it exists or not.

The term topic refers to the element in the Topic Map document. Topic types

represent a typical class-instance relationship. Topic types are themselves

defined as topics. For example, in software documentation, they might be

functions, variables, objects, or methods.

Topics have three kinds of characteristics: names, occurrences, and roles in

associations. There are base names (required), display names (optional), and

sort names (optional). A topic may be linked to one or more information

resources, called occurrences of the topic. An article about the topic and a

picture related to the topic are examples of occurrences.

Occurrences may be of different types – for example, “file,” “monograph,”

“article,” “illustration,” – generally supported in the standard by the concept of the

occurrence role.

A topic association asserts a relationship between two or more topics. For

example:

“The Sun Educational Services (SES) headquarters are located in Broomfield,

Colorado.”

“Java Distributed Computing (book) was written by Jim Farley.”

“Alexander Pushkin was born in Russia.”

Association types, such as located in, written by, and born in, define

relationships between topics. Topics can play different, or the same, roles in

these relationships. For example, A and B have the same role in the association

“A works with B.” However, they play different roles in the “A was rescued by B”

association.

Scope is another characteristic of topics that limits their applicability. The

same topic can be considered under different circumstances, or in a different

scope. For example, when we refer to Washington, we always provide a scope

for this topic. It can be a president of the U.S., a state, or Washington, D.C.

We have now considered the main characteristics assigned to topics:

names, occurrences or resources, and association roles.

Topic Map representation is defined by the XTM specifications [4].

Is there any code around that supports some concepts of Topic Maps?

There are several companies and open source projects [5] working in this

direction. Every project has its own model that maps Topic Map concepts to its

software and supports these concepts. All models are different but still have

many common features. I have tried to summarize these models in a simplified

version that reflects the mainstream approach to Topic Map object-oriented

modeling. Fig. 5.1 displays this “averaged” version of an object model diagram

that represents Topic Map concepts in most current projects.

[Fig.5-1]

One of the Java implementations of Topic Maps can be found in the Topic

Maps 4 Java open source project [5]. An early version of this project released

around 100 classes that support handling Topic Maps.

After reviewing different models, I suggest that all Topic Map objects behave

in a very similar manner and can be represented with a typed collection of

objects. The com.its.base.DataElement class is the base for this collection, and

the com.its.base.TMService class is able to handle the whole collection.

Object-oriented programming (OOP) enforces strong typing in OOP

languages. Some developers tend to create a new class for any new data

structure. This expensive practice works OK on corporate workstations; however,

it quickly fails under small-device constraints. Server-side development has been

steadily growing during the past decade. I expect this decade will show

increasing demand for client applications for numerous devices. The typed-object

approach leads to an economic programming model. This does not mean that we

must deviate from OOP, we just want to be more selective in creating new

classes. Object behavior is an important criterion in this choice.

The com.its.base.DataElement class will be considered with several different

services later in this book. This class has built-in properties to provide security

access and data evaluation, and generic support for business attributes and

associated objects. Fig. 5.2 displays an object model diagram that represents

Topic Maps with the typed-object approach.

[Fig.5-2]

Products that support XTM deliver (and are capable of reading) files with

exactly the same standard format, regardless of the chosen object model and

implementation details. Here is an extract of an XTM file.

<?xml version="1.0" encoding="ISO-8859-1"?>

<topicMap id="global knowledge container">

 <topic id=" Services">

 <baseName>Training</baseName>

 <occurrence>

 <topicRef xlink:href="http://JavaSchool.com"/>

 </occurrence>

 </topic>

...

</topicMap>

Knowledge management is different from information management because

knowledge assumes more than just having information about a subject. Topic

Maps may be considered the standard for knowledge classification, codification,

and formalization.

Topic Maps and the associated syntax of XTM can represent both human

knowledge and the structural relations within elements of that knowledge. Topic

Maps are capable of providing the interchange of such information across the

boundaries of knowledge domains. To accomplish such interchange, this

technology relies on the availability of a set of rules capable of expressing the

reasoning needed for knowledge classification.

Do we become a bit smarter by getting more data? Yes and no. We would

appreciate information much more if it helped us predict market behavior, prevent

fraud, or explain the cause of cancer or the reason for the disease called aging.

About 20 years ago, I had the privilege of working with a very talented,

world-famous gerontologist, Dr. Tamara Dubina. At the time, she was

researching a new concept of biological age. Her work related health indicators

to this new concept, thus giving different perspectives on people’s aging process.

(I helped with the math model and programming, using nonlinear regression

methods.) [6]

Tamara collected a tremendous amount of data during this research. There

was a common feeling that the volume of information did not make retrieving

knowledge easier. Creating a model that could describe this data was not a trivial

task. At the same time, the data were priceless for testing the model. That was a

typical data mining process: analysis – model – test.

Data Mining Process and Methods

Statistics help with data analysis and give us a more focused view on the past.

Data mining methods look for patterns hidden in multiple data records and help

build a model that can actually provide some insight into the future. For example,

MatchLogics, Inc., one of the early Internet successes, used data mining to

understand Internet users and offer them the right products.

The data mining process consists of several steps.

1. Collecting data.

2. Sorting and filtering data for modeling.

3. Building a model.

4. Testing the model on another set of data. Testing the model on the

same data (which we used to create the model) proves nothing.

5. Tuning/fixing/redoing the model, based on the test results; then return to

step 4 or (if the test shows great results) move on to step 6.

6. Applying the model to real data and looking into the future.

Some models change rarely, some often. Most day traders, for example,

may not have enough time to create a working model.

One of the specifications provided in the data mining area belongs to the

Java community. Java Specification Request (JSR) 73 [7] identifies the main

specification objectives:

1. Provide access to data mining systems in a vendor-neutral manner.

2. Make it accessible to non–data mining experts.

3. Provide a set of functions and algorithms.

4. 4. Target the J2EE platform with consistent interface to JCX –

Connector Architecture (JSR 16); JMI – Metadata Interface (JSR 40);

and JOLAP – Online Analytical Processing (JSR 69).

5. Provide compatibility with existing data mining standards: CWM DM –

Common Warehouse Metadata; PMML – Predictive Model Markup

Language; SQL/MM for DM – ISO SQL (structured query language)

standard.

An application programming interface (API) with supported Java class

implementations will glue client applications to the data mining engine and

metadata repository.

The main data mining methods start with data classification and

approximation functions and continue with association rule discovery and

attribute importance evaluation. Data mining software captures high-level

specifications for model building. The software must be able to specify the

algorithm of data approximation (or regression) using association rules, a

decision tree, or another specific model. The target client can be an expert or a

novice user.

How does software help produce a model from mostly numeric data? There

are several typical operations: Connect to a data set. Map physical data to logical

data (a set of logical attributes used as input to model building). Set functions for

a future model. Build, test, and apply the model. Fig. 5.3 shows the sequence

diagram, and Fig. 5.4 provides an example with several lines of code using

javax.datamining package classes.

[Fig.5-3]

import javax.datamining.*;

// connect to the DataSet1
 ConnectionSpec connectionSpec =
connectionFactory.createConnectionSpec(?DataSet1", ?Mark",
?pswd");

Connection dataSetConnection =
connectionFactory.getConnection (connectionSpec);

// Create PhysicalDataSet
PhysicalDataSet dataSet = new PhysicalDataSet
(?http://JavaSchool.com?);
dataSet.getMetadata();

// Create LogicalData and map to Physical data
LogicalData logicalData = new LogicalData(dataSet);

// Set Model Functions
FunctionSettings modelSetting =
new ClassificationSettings (logicalData, ?servicePrice?);

// Build the task, execute the task, test model
BuildTask testModelTask = new BuildTask(dataSet,
modelSettings,?trainingModel?);
dataSetConnection.addObject (?testModel?, buildTask);
dataSetConnection.save();

ExecutionHandle testing = dataSetConnection.execute(testModelTask);
testing.waitForCompletion ();

Model model = (Model) dataSetConnection.getObject (?testedModel?);

[Fig.5-4]

Be aware that the javax.datamining package is not released at this time, and

the final release version may have some syntax differences.

Data mining methods expressed in object-oriented language help us

understand numbers, build models, and predict future numbers.

Probably the most difficult task is to understand people and natural

language, and to retrieve knowledge from textual and spoken information. This is

different from a search for textual information. I will review the method of frames

and slots that is currently used in the Dialog Manager (Speech Recognition)

product to parse natural language. Then, I would like to introduce you to the

CycL language, which from my point of view, is the most powerful instrument

created for building a bridge between computers and natural language.

Following are a few techniques that are currently dealing with natural

language.

Frames and Slots

Frames and slots are very convenient for representing domain information. A

frame has a name and a set of slots. Each slot is a concept hierarchy with the

slot name as the root. For example, CU Communicator with its Dialog Manager

[8] engine is a product based on the frames-and-slots method that offers a library

of functions (parsers) for manipulating frames. Information is extracted from

parses into frames and is stored in frames directly by the Dialog Manager. Here

is an example:

Frame: System_Groups

[Group1]

[Roles]

[Role1]

[RoleN]

[Available_Services]

[Service1]

[ServiceN]

;

The application developer creates a task file, which is similar to a frames file

for the parser. The task file contains:

• The definition of the system ontology

• Templates for prompting for information

• Templates for verifying information

• Templates for generating SQL queries

Dialog Manager offers a set of standard canonical functions for dates, times,

and numbers.

When Dialog Manager receives a parse, it calls the function extract_values()

to extract information from the parse into frames. The extract_values() function

scans the parse for any token names that are in the canonical function table.

When it finds a token in the table, it calls the function associated with the token,

passing it to a pointer to the input string, starting at the token. The function

rewrites the input string starting at that point.

After information is extracted and merged into the context, the function

action_switch() is called to determine the next system action. This function

examines the context and takes an action based on a prespecified order of

priorities.

The frames-and-slots method, as well as the products (like Dialog Manager)

that are based on this method, have their advantages and limitations. The

method is relatively simple and works OK in a single domain, but it is hard to

extend across domain borders to the level of generic knowledge.

Systems based on this method currently have a good business standing, as

they are early in the speech recognition market. The proprietary technology (with

no mainstream standards) used in most frames-based systems locks current

clients into a single-vendor schema. It also limits knowledge-base development

by current client business domains with very modest growth of generic

knowledge data. This may discourage many customers as competition from

VoiceXML-based systems (e.g., BeVocal, Nuance, SpeechWorks, Tellme) grows

and XTM-based data become available to the public.

The CycL Language

The CycL language has been in development by Cycorp for almost two decades,

but only recently has it been made available to the public in the OpenCyc project

[9]. I would like to thank the ontology experts from Cycorp who helped me by

providing their insight into this new and exciting technology: Jen Headley, Doug

Lenat, John De Oliveira, Steve Reed, Keith Goolsbey, Jon Curtis, Michael

Witbrock, Roland Reagan, Kevin Knight, Douglas Foxvog, and Tony Brusseau.

The advantage that the Cyc method has over methods considered earlier is

that Cyc has a language that is capable of expressing knowledge: CycL. In CycL,

the meanings of statements and inferential connections between statements are

encoded in a way that is accessible to a machine.

Presently, natural languages are virtually meaningless to machines. I can

say, “All system users have at least one login. All system users are people. Jeff

is a system user.” From these sentences, a person can infer that Jeff has a login,

but a machine cannot, at least not until a machine can understand English

sentences using some common sense.

In the formal language Cyc uses, inference is reduced to a matter of symbol

manipulation, something that a machine can do. When an argument is written in

CycL, its meaning is encoded in the shape, or symbolic structure, of the

assertions it contains. Determining whether or not an argument is valid can be

achieved by checking for certain simple physical patterns in the CycL sentence

representing its premises and conclusions.

One issue in the choice of representations is expressiveness. It is impossible

to express the complicated realities of life with programming language primitives.

Yet, somehow we do this every day. We create multiple abstractions – filters that

finally break down the complexity – and often disconnect the final product from

our initial ideas. Natural language would be ideal, but not for machines that

cannot tolerate conflicts created by the language. An “almost natural” language

like CycL is a better choice. It allows great flexibility in creating new expressions

while preserving non-conflicting rules and data.

Yes, we want a great deal of expressiveness. We would like to create a kind

of ideal comprehensive system. Does this mean we should use natural language

for such a system?

The expressiveness of natural language, though, goes beyond the minimum

of complexity we would like to introduce for this task. The expressiveness of

natural language also gives rise to special problems if one wants not only to

store, but also to reason with, the represented knowledge. Logic-based

representation, in contrast, gives us enough expressiveness, and facilitates the

reasoning as well.

Natural language is obviously very expressive, too expressive to be

formalized for the machine. Consider the following sentences.

Jeff’s failure resulted from his error.

Jeff’s error caused his failure.

Jeff’s failure was a consequence of his mistake.

Jeff’s mistake occurred before his failure.

Each of these sentences means roughly the same thing, and each implies

that Jeff’s error occurred before his failure. If we want to represent that

implication, do we write a rule for every natural language expression that could

possibly express this point?

CycL is a logic-based language that offers a simplified, more efficient

approach. First, we identify the common concepts – for example, the relation

“error caused failure.” This is a very common relationship for English sentences.

Then, we formulate rules about those common concepts. For example, “if error

caused failure, then error temporally precedes failure.”

Another issue in the choice of a knowledge representation language is

ambiguity. Natural language is highly ambiguous. For example, if we say, “Steve

is running fast,” we don’t know whether Steve is changing location, operating a

piece of machinery, or running as a candidate for office. On the other hand, with

a logical representation, we can precisely define the concepts we use. We can,

for example, define a distinct concept corresponding to each of these three

senses of “running.” This allows us to place the appropriate rules on their

respective concepts, whereas they could not all be placed on the one ambiguous

word.

Cyc Technology: Current Status and Projections
The CycL language is probably the most advanced instrument for general

knowledge capture and processing. After almost two decades of development

sponsored by the U.S. government, IBM, and others, Cycorp is opening the

language, sources (partially), and knowledge base (partially) to the public in the

OpenCyc project. This opening is increasing the number of current Cyc clients,

accelerating Cyc technology development, and providing the potential for rapid

growth of the Cyc-based generic knowledge base.

Cyc technology is not yet a standard. However, the bridge from Cyc to XTM

delivers the promise of a standardized interchange of such information across

the boundaries of knowledge domains, computer notation, and even natural

language.

Today, Cyc is the best technology for building a generic knowledge-based

product that provides a bridge for non–computer literate users to talk to computer

services. Cyc itself is not a speech recognition system; another layer must be

provided to include Cyc in such systems. This additional layer can be made with

mainstream technologies (based on SALT [Speech Application Language Tags],

VoiceXML, or Java Speech API standards) integrated with knowledge services.

Such integration can occur in the XML-based scenarios we will discuss a bit

later.

Fig.5.5 illustrates relationships between knowledge, XML, and speech

technologies.

[Fig.5-5]

What Is CycL? How Hard Is It to Learn and Use This Promising
Language?

First, Cyc is very different from frame-and-slot systems, in which creating new

rules and vocabulary would be considered expensive.

Cyc encourages the expression of complex problems and ideas using more

vocabulary and simple rules. In CycL:

Creating collections is not hard and is relatively inexpensive.

Creating functions is not expensive.

Creating predicates is easy and cheap.

Adding new vocabulary and microtheories is not expensive.

The Cyc language consists of:

Constants – #$Login, #$GroupMembers; denote individuals or collections.

Predicates – #$likesAsFriend, #$bordersOn, #$objectHasColor, #$isa

Logical connectives – #$and, #$or, #$not

Quantifiers – #$implies, #$forAll, #$thereExists

Sentences – #$isa, #$Simon.Roberts, #$SystemUser; form assertions or

queries. The assertion in this example says that Simon.Roberts is an instance of

SystemUser collection.

Denotational functions – #$LoginFn Simon.Roberts; relations that can be applied

to some arguments to pick out something new. For example, we can interpret the

formula

#$password (#$LoginFn #$Simon.Roberts) #$cessna172 as “The password in

the login function for Simon Roberts is cessna172.”

Microtheories – #$HumanActivitiesMt, #$OrganizationMt, #$JavaSchoolMt;

bundle assertions together based on time, space, or anything else that can help

in knowledge organization.

Is CycL Flexible Enough to Express Complicated Logic? Can We
Build Efficient Systems Based on the Language?

I would like to try to resolve these questions, which also troubled me when I

started with CycL.

Is this language flexible and extensible enough to express complicated logic

related to natural language? If so, can this language be efficient? Does it have

validation mechanisms? (Natural language does not have validation rules, which

is one of the reasons it is not suitable for computers.)

Working with CycL, I found positive answers to both of the questions above.

Let us start with CycL validation mechanics.

CycL allows (but does not require) us to specify the number and types of

arguments for any sentence type. This is very similar to regular programming

languages so loved by computers.

How does Cyc deal with possible contradictions between existing and new

knowledge? It is not feasible for Cyc to reconsider every assertion in its

knowledge base every time we add new data. Cyc's truth maintenance system

(TMS) and its argumentation method help Cyc deal with this issue. (I will talk

more about TMS later.)

Here is an example of how CycL establishes rules for creating expressions.

It is very important (especially for a machine) that there are rules and that every

expression can be validated against these rules. Let us say we want to create a

new predicate.

There are a couple of important features that every predicate and function

has. The first is arity. Arity has to do with how many arguments a predicate or

function requires, in other words, how many arguments to which you have to

apply the function at a given time to result in a meaningful sentence or term. The

second feature is the notion of argument type, which has to do with what types of

things a predicate or function requires as a particular argument.

Arity is the number of argument places a predicate or function has. It is

expressed in CycL in two ways:

1. The predicate #$arity
(#$arity #$GroupFn 1)

(#$arity #$loginPassword 2)

2. The collections
#$UnaryPredicate, #$UnaryFunction, #$BinaryPredicate, #$BinaryFunction, etc.

(#$isa #$GroupFn #$UnaryFunction)

(#$isa #$loginPassword #$BinaryPredicate)

Arity, as you know, refers to the number of argument places that a particular

predicate or function has. There are two ways to express the arity of a particular

predicate or function in the CycL language.

First, we have a predicate, #$arity, which you can apply to any relation – in

other words, any predicate or function – in conjunction with a numeric value to

denote how many arguments that relation accepts. For example, (#$arity

#$GroupFn 1) denotes that the #$GroupFn function accepts only one argument.

The #$loginPassword predicate has an arity of two; thus it takes two arguments

at a time.

Most relations in CycL have low arities (a low number of arguments); in fact,

most have just one or two as their arity. Remember that Cyc encourages

simplicity! Some relations take three or four arguments, a few take five

arguments, and a very small number take more than five arguments. Seven is

probably the highest arity used, although in principle, arity could be any number.

Try to keep them on the low side.

Yet, there are few instances of #$UnaryPredicate in CycL. Instead, unary

properties are usually represented either as #$Collections or #$AttributeValues.

For example, see the #$TeamLeader collection below:

(#$isa #$JeffZhuk #$TeamLeader)

This is the recommended way, rather than the new predicate #$teamLeader,

as in the assertion below:

 (#$teamLeader #$JeffZhuk)

There are a lot of unary functions, but very few unary predicates. The reason

for this has to do with the Cyc inference engine and certain facts about how it

works most efficiently. There are alternative ways to express what you might

think of intuitively as a unary property.

I mentioned before that Cyc has its own way to maintain logical data

consistency. Let us say we want to add an argument to an existing assertion.

This action would immediately trigger the TMS’s argumentation on this assertion.

If this assertion changes its value from true to false or otherwise, Cyc looks at all

the assertions supported by the newly changed assertion.

The TMS does not add new deductions or assertions, it only changes or

removes them. The changing is done in such a way that infinite oscillation is

impossible. If the change removes the last argument from an assertion, the

assertion now has a truth-value of "unknown” and is removed from the

knowledge base.

For example, someone removes the assertion “JeffZhuk is a person”. The

TMS will trigger an investigation of other assertions that are based on the one

just removed. All found related rules will be removed. For example, the rule

“spouse of JeffZhuk is Bronia” will be removed if TMS maintains the rule that only

a person can have a “spouse”.

What Is the Basic Structure of the Cyc Knowledge Base?
The knowledge base comprises a massive taxonomy of concepts and specifically

defined relationships that describe how those concepts are related. The context

of the knowledge is arranged by degrees of generality, with a small layer of

abstract generalizations at the top and a large layer of real-world facts at the

bottom.

A very powerful and simple CycL constant helps to create unlimited

hierarchies. To express that one collection is subsumed by another, we use the

CycL constant #$genls. A formula of the form below means that every instance of

the first collection, GroupMember, is also an instance of the second collection,

SystemUser.

(#$genls #$GroupMember #$SystemUser)

In other words, SystemUser is a generalization of GroupMember.

Most abstract concepts belong to the highest layers of Cyc knowledge base

hierarchy. Real and specific concepts and facts belong to lower levels of Cyc

knowledge base structure. We can roughly separate the Cyc knowledge base

into four layers.

1. The upper ontology – abstract layer

2. Core theories

3. Domain-specific theories

4. Ground-level facts

The highest, abstract layer is called the upper ontology. The upper ontology

layer does not say much about the world at all. It represents very general

relations among very general concepts. For example, it contains assertions to the

effect that every event is a temporal thing, every temporal thing is an individual,

and every individual is a thing. “Thing” is Cyc’s most general concept. Everything

whatsoever is an instance of “thing.”

The next knowledge base layer is called core theories. Thies layer contains

several core theories that represent general facts about space, time, and

causality. These are the theories that are essential to almost all commonsense

reasoning.

Domain-specific theories are more specific than core theories. These

theories apply to special areas of interest, such as group security policies, the

service request structure, sentence types, and dialog management rules. These

are the theories that make Cyc particularly useful, but they are not necessary for

commonsense reasoning.

The final layer contains what is sometimes called ground-level facts. These

are statements about particular individuals in the world. For example, “Kathy

started a session” is a specific statement about one person. Generalizations

would not go here; they would go in a higher layer. Anything you can imagine as

a fact or a headline in a newspaper (the two are not the same, of course) would

probably go in ground-level facts.

What Is the Syntax of CycL? Constants and Predicates
CycL tries to model the world in terms that most people know and understand. Its

constants are the "vocabulary words" that represent collections of concepts.

For example, #$ComputerService represents the set of all computer

services, or #$ServiceAction represents all possible actions provided by a

service. Each constant has its own data structure in the knowledge base. The

data structure includes (besides the constant itself) the assertions (statements)

that describe this constant.

Imagine that we want to express an idea that email belongs to computer

services. We tell CycL:

(#$isa #$Email #$ComputerServices)

We read this sentence as, “Email is an instance of computer services.”

What is #$isa in this sentence? In knowledge terms, it is a predicate.

Predicates establish relationships between objects. Other predicate examples

are hasFriends and accessType. We form sentences by applying predicates to

some arguments. For example:

(#$isa #$VoiceTechnology #$TrainingCourse)

In this sentence, the predicate #$isa, which means, "is an instance of," is

applied to the arguments #$VoiceTechnology, which relate VoiceTechnology to

#$TrainingCourse, which denotes the collection of all training courses. The

resulting sentence says that VoiceTechnology is an instance of a training course.

CycL Has Functions
Here is a definition for the function #$MemberRoleFn:

 (#$arity #$MemberRoleFn 2)

 (#$arg1Isa #$MemberRoleFn #$User)

 (#$arg2Isa #$MemberRoleFn #$Group)

 (#$resultIsa #$MemberRoleFn #$GroupRole)

We read this function definition as “the MemberRoleFn function has two

parameters: user and group.” The function returns a specific role that the user

plays in the specified group.

Functions differ from predicates. Functions return a Cyc term as a result.

Accordingly, function definitions describe not only the number and types of

arguments (e.g., predicate definitions) but must also describe the type of the

result to be returned using the predicate #$resultIsa.

Functions with fixed arity are similar to predicates in that the definition of the

function must specify the type of each argument using the predicates #$arg1Isa,

#$arg2Isa, and so forth. Functions without fixed arity are defined using the

predicate #$argsIsa, which specifies a single type of which every argument must

be an instance.

Use Variables and Logical Connectives to Create New Rules

CycL has variables. Variable names begin with a question mark and are written

in capital letters: ("?OBJECT") or (“?X”).

Creating rules in CycL is easy. I will do it right now with the #$implies

keyword.

 (#$implies

 (#$and

 (#$hasMembershipIn ?USER ?GROUP)

 (#$hasRole ?USER ?GROUP #$Admin)

 (#$hasPrivilege ?USER ?GROUP #$ChangeMemberRoles)))

This rule says that if a user has membership in a group and the user has the

role of an administrator in this group, the user has the privilege of changing

member roles in this group. Creating rules in Cyc is not expensive.

#$implies, #$and as well as #$or, and #$not are the most important logical

connectives in CycL.

Assertions and Microtheories
After a new sentence is successfully inserted (or asserted) into the Cyc

knowledge base, it is stored as an assertion. Every assertion belongs to one or

several microtheories.

A grouping mechanism that is an improvement over functions is offered by

CycL microtheories. Microtheories offer an assertion grouping mechanism.

A microtheory provides an umbrella over several assertions. Microtheories

enable better knowledge base building together with better and more scalable

inference.

Microtheories focus development of the Cyc knowledge base and enable

shorter and simpler assertions.

Under a microtheory umbrella, we can provide a set of short assertions

instead of a single complicated one.

Here is an example:

Mt: DataAccessMt

#$isa #$Read #$AccessType

#$performedBy #$Read #$AlexNozik

#$performedAt #$Read #$08/07/2002-23:30:56

In this example, Mt: DataAccessMt is a common name (umbrella) over several

assertions.

Microtheories also allow us to cope with global inconsistency in the

knowledge base. In building a knowledge base of this scale and covering

different points of view, different times and places, different theories, and

different topics, some inconsistency is inevitable. Inconsistencies, however, can

make accurate reasoning impossible. Using microtheories, we can isolate terse

assertions like the one above from others with which they might be inconsistent,

and reason within consistent bundles.

We can allow inference to focus on the most relevant assertions and those

that share the current assumptions.

Can Cyc Understand the Concept of “Events”?
Yes. CycL has a collection of Events.

Events are represented as individuals that:

• Have components (are not empty in space or time)

• Are situations

• Have temporal extent

• Are dynamic

Events are classified in Cyc collections such as those below:

#$Reading, #$SalesActivity, #$Communicating, etc.

Events in Cyc belong to a collection called #$Event. Events have

components or stretches of space or time. They are also situations. The situation

can be any configuration or arrangement, such as a set of objects, a specific

place, or a specific time.

Events have temporal extent: they occur over time. Events are also dynamic:

they can change over time.

This is really just the tip of the iceberg. There are many more specializations

of #$Event. The #$Information-TransferEvent collection can be very useful in

describing computer system tasks. The #$Information-TransferEvent collection

has specializations, such as #$Communicating and #$Reading.

Why do we reify (store) individual events (instances of #$Event) in Cyc? If

our knowledge about an event changes, having a reified (stored) data structure

to represent the event enables us to add information or alter the representation in

Cyc very easily.

Events are related to each other in the #$genls hierarchy. We can use that

hierarchy to inherit knowledge downward from the more general types of events

to the more specialized types of events.

For instance, if we have the general event collection #$UserSessionEvent

and we state that this collection consists of #$UserSessionInput and

#$SystemSessionResponse, Cyc will know that this is also true of specializations

of #$UserSessionEvent, such as #$ToddGreanierSessionEvent or

#$ToddGreanierSessionInput.

How Do We Attach Events to the Things Involved?
Many things can be components of events. Events can have performers, and

there can be devices that performers use during the events. Events can have

subevents, or substages. Events can occur at places, and those places are

somehow involved in the events.

Events take place at certain times, and times of events are also somehow

involved in events (we have special predicates to relate times to events). We

state how components of events are involved in events with role predicates –

predicates that are instances of the collection #$Role.

In CycL we use special predicates called roles to relate reified events to their

components. There is a lot of knowledge built into the construction of role

predicates to help Cyc understand how these roles function to relate components

of events to reified events.

Roles have a hierarchy that extends Cyc’s ability to reason about the

components – the participants and subparts – of events.

Roles are specialized predicates developed for relating components of

events to events. There are two general specializations of the collection #$Role:

#$ActorSlot and #$Sub-ProcessSlot.

Roles are arranged in a predicate hierarchy based on #$genlPreds. The top

node of the hierarchy is #$actors. Every instance of #$Role is a specialization of

#$actors.

These CycL examples show the roles in the conversational events during a

user session:

(#$performedBy #$Reading003 #$MashaTishkov)

MashaTishkov performs Reading003.

(#$informationRequested #$Reading003 #$ListOfUsers)

The information requested in Reading003 is the ListOfUsers.

Here is an example of a CycL rule that captures general knowledge about

roles, including knowledge about the kinds of things that are related by certain

roles.

(#$implies

 (#$and

 (#$isa ?READ #$Reading)

 (#$informationOrigin ?READ ?OBJECT))

 (#$isa ?OBJECT #$TextualMaterial))

(#$implies

 (#$and

 (#$isa ?READ #$Reading)

 (#$performedBy ?READ ?USER)

 (#$hasSecurityType ?OBJECT #$GroupMembersOnly))

 (#$isa ?USER #$GroupMember))

The first one says, “In every instance of #$Reading that has a source, that

information source is textual material.” A separate assertion should tell us that

every instance of #$Reading does have an information source. In other words,

“Whenever someone reads, they read text.”

The next one says, “Any reading event done on an object with security type

restricted to group members only must be done by a person who is a group

member.”

By the way, we do not always need to write the strange CycL-ish characters

#$. Cyc can add them for us internally. Therefore, the example below is as valid

as the example above.

(implies

 (and

 (isa ?READ Reading)

 (performedBy ?READ ?USER)

 (hasSecurityType ?OBJECT GroupMembers))

 (isa ?USER GroupMember))

All these examples demonstrate CycL’s unmatched capability of expressing

knowledge. What can we do with CycL today?

Cyc Answers Questions
We can ask Cyc questions by creating three types of queries:

1. Ask – general-purpose query

2. Prove – conditional query

3. Query – either of the above

For example, we can have a query in the microtheory 2003ScheduleMt

(groupMember XML-TrainingClass ?WHO)

This query is a request to generate a set of names from the list XML-

TrainingClass according to the 2003ScheduleMt.

An example of an answer is provided below:

((?WHO . ScottDennison))

…

…

These small examples may lead you to the wrong conclusion that we can do

these same basic operations with almost any database. This is not exactly true.

The difference will be more visible when you try to express more complicated

problems, with many factors that must be taken into consideration, in

multidimensional criteria space.

The core CycL algorithm treats the inference problem as a search through

proof-space for a satisfactory resolution of a particular query. Each inference

step in the search is a single supporting formula in the eventual proof.

We would appreciate the very rich expressiviness of CycL and power of the

core CycL inference engine algorithm when dealing with such problems.

How to Begin with OpenCyc

If you do not have Java 2 installed on your machine, please install it now. Then

download the latest version of OpenCyc from www.opencyc.org, uncompress it, and

follow the instructions in the readme file.

I provide an example for a Linux system, just to demonstrate how easy it is

to start.

http://www.opencyc.org/

tar xvfz opencyc-version.tgz

cd opencyc-version/scripts/linux

./run-cyc.sh

At this point, the OpenCyc server is up and running.

You can enter expressions from the command line or access the OpenCyc

Web server running on your machine with your local browser. The URL is

http://localhost:3602/cgi-bin/cyccgi/cg?cb-start.

Good luck browsing OpenCyc using the Guest or CycAdministrator account.

How to Include OpenCyc in the Bigger Picture of Your
Distributed System

OpenCyc has several communication options. We already looked into the

simplest options that provide access to OpenCyc directly from the command line

or via a Web browser. These options are helpful in exploring Cyc’s behavior. To

include the OpenCyc server into your business network, use one of the following

options:

• Peer-to-peer JXTA interface

• Direct TCP/IP socket communications with

org.opencyc.api.CycConnection

• Remote TCP/IP communications via

org.opencyc.api.CycRemoteConnection class with powerful methods like

converse(message) and getTrace().

A few words about the JXTA project: JXTA is not an abbreviation. The name was

picked up by Sun Microsystems from the word juxtapose, which means to put

things next to each other. The JXTA project is Sun Microsystems’ peer-to-peer

technology initiative supported by Java communities.

We can look at the knowledge engine not only as a smart database, but also as a
possible service brain that can add some smartness to our services. Naturally,
this would require some interaction between existing services and the knowledge
engine. An example might be XML-based APIs that allow user programs to
request knowledge engine services.

We would also like to enable the knowledge engine to directly invoke existing
services. What we actually need is two-way XML based communications from a
user program to OpenCyc and back.

Let us start building a service-knowledge bridge that would greatly complement
existing OpenCyc APIs.

We start with the ServiceConnector class that is present in Fig.5-6.java.

[Fig.5-6]

The ServiceConnector class invokes any service and can download additional
service classes at run-time if necessary. The ServiceConnector class uses the
service name to obtain a needed instance of a service-class and invokes a
selected method-parameter on this currently acting object. The
ServiceConnector class can be considered as an actor that can actually play
multiple (object) roles.

Two of the most important methods of the class are the act() method and the
registerObject() method.

The act() is responsible for invoking the proper method on the proper service-
object. The registerObject() method stores service-objects in the table of services
and helps to reuse the same service object for multiple method invocations.

Remember that service objects live their own life, and keep their state, which can
have an important influence on invoked service behavior.

The KnowledgeService class (Fig.5-7.java) represents one of multiple services
that can be invoked by the ServiceConnector.

[Fig.5-7]

There are no dependences between the ServiceConnector and services in the
J2SE (standard) environment. If the application operates in J2ME, any services
implemented would be known to the ServiceConnector interface. This would
compensate for the absence of a reflection package in J2ME.

The KnowledgeService serves as a wrapper around the org.cyc.api.CycAccess
methods. The KnowledgeService class uses the org.cyc.api.CycAccess class to

communicate to the Cyc engine over TCP/IP sockets. The constructor of the
KnowledgeService initiates access to the knowledge engine and prepares Cyc to
talk. The wrapper helps to simplify and unify access to Cyc via XML based
descriptions translated into hash tables.

The user can request a set of actions directly asking for “service=\”className\” “
with “action=\”methodName\” “. The user can also request service instructions
from the knowledge engine via the getIstructions() method.

The getInstructions() method provides for the possibility of a scripted dialog
between a user program and the knowledge engine. The set of instructions
(script) can be stored in-line in the knowledge base, or the knowledge engine can
point to a file with instructions.

Here is a separate example of a request to the Cyc knowledge engine to create a
constant, insert (assert) assertion, query, etc.

 Example:

<act service=”KnowledgeService” action=”createNewPermanent”
 constant=”JeffZhuk” />

You can also include a request for your own (non-Cyc) service in the script.
In this case, all parameters that follow the action name will be passed as a single
string to your method in your class.

A general recommendation is to pass key-value pairs to your method in a single
string and provide the parameter interpretations inside your method.

Example:

<act service=”Mail” action=”send” from=”Jeff.Zhuk@JavaSchool.com”
 to=”reed@cyc.com” subject=”test” body=”testing mail service” />

The actual communication API between Cyc and Java is still evolving. The basic
Cyc-Java dialog and service operations described above are dressed into XML
tags. An external user program can send XML based instructions to the
KnowledgeService.

The Cyc response to the KnowledgeService is also XML formatted. The
KnowledgeService can work with a simple dialog manager (in this example it is
the ScenarioPlayer class) that implements the Scenario interface.
The Scenario interface is provided in Fig.5-8.java.

[Fig.5-8.java]

The Scenario includes several methods that provide screens to the user and
accept user input. The prompt() method, for example, supports a pre-arranged
dialog between a user and the KnowledgeService, and helps to retrieve
necessary data from a user with XML based dialog scenarios.

An example of an XML based dialog scenario is provided in Fig.5-9.xml.

[Fig.5-9]

The dialog scenario in this example includes a set of questions that helps a user
introduce a new fact to the knowledge engine.

The prompt() method (implemented in a subclass, for example the
ScenarioPlayer) will translate a multi-line message passed as an argument into a
set of questions for a user. The method will store user answers and use them
according to the instructions in the message.

The instructions can prompt a user for questions or refer to user services or to
KnowledgeService methods. The prompt() method will be able to replace script
variables at run-time with the user's answers.

The prompt() method reads an XML based dialog scenario with pre-arranged
questions and consecutive service-actions that can follow such questions.

The XML based dialog scenario usually includes a set (or several sets) of
question sequences.

Here is an example of a question that might be repeated, as some of us have
more than one favorite rock band.

<prompt variable="REQUESTED-SUBJECT"
msg="What do you want to know?" />

This XML description will invoke the prompt() method on a service object of the
UserAVI (audio-video interface) class.

The service will select a proper presentation layer to show or to speak out the
question to a user.

The user's answer will be stored under the variable name “REQUESTED-
SUBJECT” and will be used in the following instruction of this scenario.

<act service=”KnowledgeService” action=”query”
msg=”(?X #$REQUESTED-SUBJECT ?Y)” />

This instruction will query Cyc for a requested subject and translate the
knowledge engine’s response into the proper presentation format.

Here is a bigger example of a set of questions about your lovely rock band. The
answers will be stored in Cyc under a name:

"LOGIN-NAME” + "FavoriteBand"

in the microtheory (that we create at run-time) with the name

“LOGIN-NAME” + “HobbiesMt”

The login name will be supplied at runtime as a parameter to the scenario.

Note that "What is your favorite rock band?" is the actual prompt for the user that
invites her/him for the first answer. There are several assertions we make after
the answer using "createNewPermanent" and "assert" methods of the
KnowledgeService class.

Note that since JDK1.4 supports “assert” as a new keyword, the real method
name for knowledge assertion must be different. It is “assertGAF.” A mechanism
of aliases implemented in the ScenarioPlayer treats such names properly.

<prompt variable=”FAVORITE-BAND-ANSWER”
msg="What is your favorite rock band?" />

<act service="KnowledgeService"
 action="createMicrotheory"
Mt="LOGIN-NAMEHobbiesMt"
msg=”Personal interest areas of LOGIN-NAME” />

<act service="KnowledgeService"
 action="createNewPermanent" msg="LOGIN-NAMEFavoriteBand" />

<act service="KnowledgeService" action="assert"
 Mt="LOGIN-NAMEHobbiesMt”
 msg="(#$isa #$LOGIN-NAMEFavoriteBand #$AttributeValue)" />

<act service="KnowledgeService" action="assert"
 Mt="LOGIN-NAMEHobbiesMt
msg="(#$isa #$LOGIN-NAMEFavoriteBand #$InterestArea)" />

<act service="KnowledgeService" action="assert"
 Mt="LOGIN-NAMEHobbiesMt
msg="(#$hobbies #$LOGIN-NAMEFavoriteBand \" FAVORITE-BAND-ANSWER \")" />

The dialog scenario includes a prompt to a user, a request to knowledge services
or a request to regular services like e-mail, etc.

 Example:

 <act service="EMailClient" action="send" from="Jeff.Zhuk@JavaSchool.com"
 to="reed@cyc.com" subject="test" body="testing mail service ... etc. " />

This approach might help us to provide a standard way of connecting the world of
services written in Java, or other languages, to the world of knowledge.

Knowledge Technologies and IT Efficiency

I started the chapter with very pragmatic reasoning, arguing for the learning and

use of knowledge technologies by service providers. With these technologies,

service providers increase their capacities and client base, and accordingly, their

profit. From my point of view, there is an even more important change that

knowledge technologies help to achieve: they elevate everyday work

effectiveness.

The famous formula “write once” is not working anywhere today, for several

reasons. One is the absence of a mechanism capable of accepting, classifying,

and providing meaningful information about new data or services created by

knowledge producers. We are all knowledge producers, but we almost never

share what we produce with the rest of the world.

Imagine a global knowledge and service container in which everyone can

easily find and access data and services, and can contribute and be rewarded for

their contributions. (Want more details on the reward policy? Look further in the

book.) We would greatly reduce work replication and redundancy, and drastically

increase efficiency. Distributed knowledge systems with the Cyc engine can

make this dream come true.

Existing and upcoming Cyc tools and related products multiply the powerful

features of the CycL language. Cyc-NL, the natural language processing system

associated with the Cyc knowledge base, brings closer the possibility of using

Cyc in SRSs. Distributed knowledge systems with built-in speech recognition

would help the average person, not just the computer geek, to participate in

computerized knowledge and service consumption and contribution. The

architecture of a distributed knowledge system with the OpenCyc engine is

displayed in Fig. 5.10. The OpenCyc and the Cyc-NL interpreter are connected to

presentation layers to simplify human access to data and services.

[Fig.5-10]

Some Intriguing Questions
How does the Cyc-NL interpreter work?

Can we plug natural language parsers directly into an SRS?

How can we use Cyc for software development, the details of knowledge to

service integration, and other tasks?

For the answers, we require another chapter. This is just the beginning of a

new development paradigm we can call Software+Ontology=Softology. Figs.

5.11 and 5.12 illustrate current and new approaches to software engineering.

[Fig.5-11]

[Fig.5-12]

Current development process includes multiple teams providing multiple

transformations of complexity of original business ideas into simplicity of

programming functions and data tables. Business ideas can be easily lost or

diluted on the way.

In the new development world, multiple layer-filters that separate business

ideas from their implementations will disappear and business experts or SMEs

(subject matter experts) will directly participate in the design process, working

with “softology” engineers in a knowledge engine–powered environment.

Summary

This chapter teaches skills that are becoming increasingly important in the new

spiral of software and business development. You learned about ontology, or

knowledge-handling methods, but the subject is too broad for a complete

overview. This chapter focused on standards established by the World Wide Web

Consortium (W3C.org), such as RDF, DAML+OIL, Topic Maps, and XTM, and

open (not proprietary) technologies, such as OpenCyc, that have great potential

for the whole industry and can be immediately used in distributed knowledge

systems that help connect people and organizations into knowledge federations.

Integrating Questions
1. What is the Semantic Web?

2. What are the main technology roles and targets of RDF and

DAML+OIL?

3. Which of the knowledge technologies described in this chapter are

applicable to your workplace?

Case Study
1. Create a DAML+OIL file describing email service with Compose and

GetMail abilities.

2. Create an XTM file describing a hierarchy of groups of computer users

and members of the groups.

3. Create a CycL microtheory describing a user’s profile, and provide a

query that requests a user’s profile with the user’s login name.

4. (Advanced). Consider the Java source in Fig. 5.6. Suggest additional

Cyc keywords that can be added to the talkToCyc() method. Change the

code that would allow you to extend this method’s vocabulary at run-

time.

5. Describe several related facts or rules related to your workplace: first in

plain English (try to limit yourself to three to five lines), and then in CycL

language.

6. Describe as Topic Maps several facts or rules related to your workplace.

References

1. Semantic Web: http://www.w3.org/2001/sw/.

2. Resource Description Framework (RDF) Model and Syntax Specification:

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

3. DAML+OIL reference description: http://www.w3.org/TR/daml+oil-reference.

4. XML Topic Maps (XTM) 1.0: http://www.topicmaps.org/xtm/1.0/.

5. Open Source Project, Topic Maps 4 Java: http://tm4j.org.

6. Dubina, T. L, A. Y. Mints, and E. V. Zhuk. 1984. “Biological Age and Its

Estimation.” Experimental Gerontology 19:133–143.

7. JSR 73, Data Mining API Specifications http://www.jcp.org/en/jsr/detail?id=73.

8. CU Communicator, Dialog Manager: http://communicator.colorado.edu/.

9. Cycorp, commonsense knowledge base and inference engine:

http://www.cyc.com.

http://www.cyc.com/
http://communicator.colorado.edu/
http://www.jcp.org/en/jsr/detail?id=73
http://tm4j.org/
http://www.topicmaps.org/xtm/1.0/
http://www.w3.org/TR/daml+oil-reference
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/2001/sw/

	 An Introduction to Knowledge Technologies
	By Jeff Zhuk
	Ontology
	RDF and RDF Schema

	DAML+OIL: A Semantic Markup Language for Web Resources
	Topic Maps
	Data Mining Process and Methods
	Frames and Slots
	The CycL Language
	Cyc Technology: Current Status and Projections
	What Is CycL? How Hard Is It to Learn and Use This Promising Language?
	Is CycL Flexible Enough to Express Complicated Logic? Can We Build Efficient Systems Based on the Language?
	What Is the Basic Structure of the Cyc Knowledge Base?
	What Is the Syntax of CycL? Constants and Predicates
	CycL Has Functions
	Use Variables and Logical Connectives to Create New Rules
	Assertions and Microtheories
	Can Cyc Understand the Concept of “Events”?
	How Do We Attach Events to the Things Involved?
	Cyc Answers Questions

	How to Begin with OpenCyc
	How to Include OpenCyc in the Bigger Picture of Your Distributed System
	Some Intriguing Questions

	Summary
	Integrating Questions
	Case Study

	References

