
From the book: Integration-Ready Architecture and Design, by Cambridge University Press, ISBN 0521525837, Jeff Zhuk
http://javaschool.com/about/publications.html
“Dave: Open the pod bay door, Hal...
Hal: I'm sorry, Dave. I'm afraid I can't do that.”

– A conversation between a man and a computer from the movie “2001: A Space Odyssey” by Stanley Kubrick

Voice Technologies on the way to a Natural User Interface

This chapter is about speech technologies and related APIs: VoiceXML, SALT,
Java Speech API, MS Speech SDK. It looks into unified scenarios with audio and
video interface definitions; considers design and code examples; and introduces
important skills for a new world of wired and wireless speech applications.

What is a Natural User Interface?

Is it another set of tags and rules covered by the nice name? Absolutely not!

This time end users, not a standards committee, make the determination of what
they prefer for their methods of interaction. A natural user interface (NUI) allows
end users to give their preferences at the time of the service request, and change
them flexibly.

Are you a “computer” person?

My guess is that you are, because you are reading this book. “Computer literate”
folks like you and me enjoy exploring the capacities of computer programs via
traditional interfaces. Even so, there are still times, such as on vacation, on the
go, and in the car, when even we would prefer “hands free” conversations over
using keyboards to access computerized services.

One person prefers handwriting, and someone else is comfortable with typing.
One would like to forget keywords and use common sense terminology instead.
Can a computer understand that “find” is the same as “search” and “Bob” is
actually “Robert”? Can it understand that someone has chosen a foreign (non-
English) language to interact with it?

A natural user interface will be able to offer all these possibilities. Some of these
complex tasks can be addressed in a unified way with Audio-Video Interface
(AVI) scenarios.

First, let us look into Java details of the voice interface, one part of a NUI. A
significant part of the population would like a voice interface as the most natural
and preferred way of interaction.

Speaking with style

http://javaschool.com/about/publications.html

Chapter 4 introduced text-to-speech conversion. We used the FreeTTS Java
Speech API implementation to write simple Java code for a voice component, but
the sound of the voice may not have been terribly impressive. What can the Java
Speech API (JSAPI) [1] offer to enhance a voice component?

Here are two lines of the source (from the chapter 4) that actually speak for
themselves:

 Voice talker = new CMUDiphoneVoice();
 talker.speak(speech);

Remember that the Voice class is the main talker.

We can create an object of the Voice class with four features: voice name,
gender, age, and speaking style. The voice name and speaking style are both
String objects, and the synthesizer determines the allowed contents of those
strings.

The gender of a voice can be GENDER_FEMALE, GENDER_MALE,
GENDER_NEUTRAL, or GENDER_DONT_CARE. Gender neutral means some
robotic or artificial voices. We can use the "don't care" value if the feature is not
important and we are “OK” with any available voice.

The age can be AGE_CHILD (up to 12 years), AGE_TEENAGER (13-19),
AGE_YOUNGER_ADULT (20-40), AGE_MIDDLE_ADULT (40-60),
AGE_OLDER_ADULT (60+), AGE_NEUTRAL, and AGE_DONT_CARE.

Here is the example of a woman’s voice selection with a “greeting” voice style:

Voice("Julie", GENDER_FEMALE, AGE_YOUNGER_ADULT, "greeting");

Not all the features of Java Speech API are implemented yet, as of the time of
writing. Here is the reality check: the match() method of the Voice class can test
whether an engine-implementation has suitable properties for the voice.

Fig.12-1.java illustrates the point.

/**
 * The getVoices() method creates a set of voices according to initial
age and gender parameters
 * The method checks if the voice if available.
 * If requested age or gender is not available the default voice
parameters are set.
 * @param gender
 * @param ages
 * @return voices
 */
 public Voice[] getVoices(int[] gender, int[] ages) {
 // make sure that at least default set

 if(gender == null) {
 gender = new int[1];
 gender[0] = GENDER_DONT_CARE;
 }
 if(ages == null) {
 ages = new int[1];
 ages[0] = AGE_DONT_CARE;
 }
 Voice[] voices = new Voice[ages.length * gender.length]; // all
combinations
 SynthesizerModeDesc desc = new
SynthesizerModeDesc(Locale.ENGLISH);
 Voice[] availableVoices = desc.getVoices();
 // try to set requested voices
 for (int i = 0; i < ages.length; i++) {
 for (int j = 0; j < gender.length; j++) {
 int k=(i+1)*j; // current voice index
 // try to set voice according to requirements
 // and check availability
 boolean available = false;
 // start from gender
 voices[k].setGender(gender[j]);
 for(int n=0; !available && n<availableVoices.length; n+
+) {
 if (voices[k].match(availableVoices[n])) {
 available = true;
 }
 }
 if(!available) {
 voices[k].setGender(GENDER_DONT_CARE);
 }
 // continue with ages
 voices[k].setAge(ages[i]);
 for(int n=0; !available && n<availableVoices.length; n+
+) {
 if (voices[k].match(availableVoices[n])) {
 available = true;
 }
 }
 if(!available) {
 voices[k].setAge(AGE_DONT_CARE);
 }
 }
 }
 // at this point all requested voices set to requested
parameters or to default
 return voices;
 }

[Fig.12-1]

The getVoices() method creates a set of voices according to initial age and
gender parameters. If the requested age or gender is not available, the default
voice parameters are set.

We can use this method in the scenario of multiple actors that have different
gender and ages.

<actors name=”age” value=” AGE_TEENAGER | AGE_MIDDLE_ADULT” />
<actors name=”gender” value=”GENDER_FEMALE | GENDER_MALE” />

These two scenario lines define arrays of age and gender arguments that
produce four actor voices.

JavaTM Speech API Markup Language

An even more intimate control on voice characteristics can be achieved by using
the JavaTM Speech API Markup Language [2] (JSML). JSML is a subset of XML
that allows applications to annotate text that is to be spoken, with additional
information. We can set prosody rate or speed of speech. For example:

Your <emphasis>United Airlines</emphasis> flight is scheduled tonight
<prosody rate="-20%">at 8:80pm</prosody> It is almost 4pm now. Good time to
get ready.

This friendly reminder emphasizes the airline company name, and slows down
the voice speed 20% while pronouncing the departure time.

According to the Java Speech API, the synthesizer’s speak() method
understands JSML. JSML has more element names or tags, in addition to
emphasis and prosody.

For example, the div marks text content structures such as paragraph and
sentences.

Hello <div type="paragraph">How are you</div>

The sayas tag provides important hints to the synthesizer on how to treat the text
that follows. For example, “3/5” can be treated as a number or as a date.

<sayas class="date:dm">3/5</sayas>
<!-- spoken as "May third" -->

<sayas class="number">1/2</sayas>
<!-- spoken as "half" -->

<sayas class="phone">12345678901</sayas>
<!-- spoken as "1-234-567-8901" -->

<sayas class="net:email">jeff.zhuk@javaschool.com</sayas>
<!-- spoken as "Jeff dot Zhuk at Javaschool dot com" -->

<sayas class="currency">$9.95</sayas>
<!-- spoken as "nine dollars ninety five cents" -->

<sayas class="literal">IRS</sayas>
<!-- spoken as character-by-character "I.R.S" -->

<sayas class="measure">65kg</sayas>
<!-- spoken as "sixty five kilograms" -->

In addition, a voice tag specifies the speaking voice.

For example:

<voice gender="male" age="20"> Do you want to send fax?</voice>

You can see that we can define the speaking voice in our Java code (see Fig.12-
1) or in JSML. Which way is preferable?

For the famous “Hello World” application, it is easier to specify voice
characteristics directly in the code. JSML would be the better answer for real-life
production quality applications; it gives more control of speech synthesis.

JSML Factory as one of the AVIFactory implementations

JSML based text can be generated on the fly by an appropriate lightweight
presentation layer component of the application. No adjustment of the core
services is required. We can use XML Style Sheet Language for Transformations
(XSLT) to automatically convert core service contents into HTML or JSML forms.

Fig.12-2 shows the Object Model Diagram for such an application.

[Fig.12-2]

The AVIFactory interface on the left side of the Fig.12-2 has multiple
implementations for audio and video presentation formats. Any AVIFactory
implementation transforms data into JSML, HTML, or other presentation formats.

The ScenarioPlayer class plays a selected scenario and uses the
ServiceConnector object to invoke any service that retrieves data according to a
scenario.

The ScenarioPlayer class creates the proper AVIFactory presenter object to
transform data into the proper audio or video presentation format.

In this chapter, we will look into an example of the AudioFactory while in the
chapter 14 we will consider implementation examples of the ScenarioPlayer and
other classes.

Speech Synthesis Markup Language

Is JSML the best way to represent voice data? We have to ask several more
questions before we can answer this one. For example, what are the current
standards in the speech synthesis and recognition area?

Speech Synthesis Markup Language (SSML) [3] is an upcoming W3C standard;
the SSML Specification Version 1.0 might be already approved by now.

JSML and SSML are not exactly the same (surprise!). Both are XML-based
definitions for voice synthesis characteristics. Do not panic! It is relatively easy to
map SSML to JSML for at least some voice characteristics.

An example of an SSML document is provided in Fig.12-3.xml.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- SSML Document-->

<speak version="1.0"
 xmlns="http://www.w3.org/2001/10/synthesis"
 xml:lang="en-US">
 <sentence>
 Message from <prosody rate="-30%"> Deena Malkin </prosody>

 delivered <say-as type="date"> 02/13/2003 </say-as>
 research paper on <prosody rate="-30%"> SSML </prosody>
 </sentence>
</speak>

[Fig.12-3]

The differences between SSML and JSML are very visible but similarities are
even more impressive.

Here is a brief review of basic SSML elements.

audio – allows insertion of recorded audio files

break - an empty element to set the prosodic boundaries between words

emphasis - increases the level of stress with which the contained text is spoken

mark - a specific reference point in the text

paragraph - indicates the paragraph structure of the document

phoneme - provides the phonetic pronunciation for the contained text

prosody - controls the pitch, rate, and volume of the speech output

say-as - indicates the type of text contained in the element; for example, date or
number

sentence - indicates the sentence structure of the document

speak – includes the document body, the required root element for all SSML
documents

sub – substitutes a string of text that should be pronounced in place of the text
contained in the element

voice - describes speaking voice characteristics

Here is an example of another SSML document:

<?xml version="1.0" encoding="ISO-8859-1"?>
<speak version="1.0"
 xmlns="http://www.w3.org/2001/10/synthesis"
 xml:lang="en-US">

<sentence>

Your friendly reminder
<prosody pitch=”high” rate=”-20” volume=”load”>it is only
 <say-as type=”number”> 5 </say-as> days left till the Valentine day</prosody>

</sentence>

</speak>

From SSML to JSML

A simple example of mapping SSML to JSML is provided with the
SSMLtoJSMLAudioFactory class, which implements the AVIFactory interface
and represents a version of the AudioFactory, Fig.12-4.java.

// SSMLtoJSMLFactory

package com.its.connector;

import javax.speech.*;
import javax.speech.synthesis.*;
import java.util.Locale;

/**
 * The SSMLtoJSMLFactory class is to transform SSML data into JSML
format
 * And present the data
 * @author Jeff.Zhuk@JavaSchool.com
 */
public class SSMLtoJSMLAudioFactory implements AVIFactory, Speakable {
 private String source;
 private String jsml; // formatted JSML string
 private Synthesizer synthesizer;
 // private Voice[] voices; // optional

 // private int[] ages = {AGE_TEENAGER,AGE_MIDDLE_ADULT};
 // private int[] gender = {GENDER_FEMALE, GENDER_MALE};
 private String[] SSMLmap = {"<sentence>","</sentence>","<say-as
type","</say-as>"};
 private String[] JSMLmap = {"<div type=\"sent\">","</div>","<sayas
class","</sayas>"}
 /**
 * The init() method is to initiate data
 * @param source
 */
 public void init(String source) {
 this.source = source;
 }
 /**
 * The initComponents() method initializes synthesizer
 * The method can optionally use getVoices() to init voice
components
 */
 public void initComponents() {
 try {
 // Create a synthesizer for English language
 synthesizer = Central.createSynthesizer(new
SynthesizerModeDesc(Locale.ENGLISH));
 // Get it ready to speak
 synthesizer.allocate();
 synthesizer.resume();

 // voices = getVoices(gender, ages); // optional
 } catch(Exception e) {
 System.out.println("SSMLtoJSMLAudioFactory.init:ERROR
creating synthesizer");
 }
 /**
 * The getHeader() method is to provide a proper presentation header
 * @return header
 */
 public String getHeader() {
 return "<?xml version=\"1.0\"?>\n<jsml>\n";
 }
 /**
 * The getBody() method is to proved a proper body in the
presentation format
 * @return body
 */
 public String getBody() {
 // extract body from the original source
 String body = Stringer.getStringBetweenTags(source, "speak");

 // replace the SSMLmap cases with the JSML tags
 // Stringer.replaceIgnoreCase is similar to the replaceAll() of
String in 1.4
 for(int i=0; i<SSMLmap.length; i++) {
 body = Stringer.replaceIgnoreCase(body,
SSMLmap[i],JSMLmap[i]);
 }
 return body;
 }

 /**
 * The getFooter() method is to provide a proper footer
 * @return footer
 */
 public String getFooter() {
 return "</jsml>";
 }
 // more methods

[Fig.12-4]

The SSMLtoJSMLAudioFactory class implements the AVIFactory interface.
There are at least six methods that must be provided in this class. The Fig.12-4
displays four of them.

The init() method initializes an original source. The initComponents() method
creates the synthesizer object and optionally can use getVoices() method
considered in Fig.12-1 to initialize voice components. The getHeader() method
returns the standard JSML header. The getFooter() method returns the standard
JSML footer.

The getBody() method extracts a speakable text from the original SSML source.
The “speak” tags frame this text. We use the Stringer.getStringBetweenTags()
method for body extraction.

The next move is to map SSML tags with appropriate JSML tags. We use two
string array-maps: the SSMLmap array and the corresponding JSMLmap array.

A simple loop uses the Stringer.replaceIgnoreCase() method to map these tags.
(We will consider the Stringer class with its methods in chapter 14.)

Play JSML

Note that the SSMLtoJSMLAudioFactory class implements the Speakable
interface. The Speakable interface is the spoken version of the toString() method
of the Object class. Implementing the Speakable interface means to implement
the getJSMLText() method. The getJSMLText() method as well as the play()
method are shown in Fig.12-5.java

 /**
 * The getJSMLText() method returns JSML string
 * @return jsml
 */
 public String getJSMLText() {
 jsml = getFooter() + getBody() + getFooter();
 }
 /**
 * The play() method uses the factory properties to present the
content
 */

 public void play() {
 if(synthesizer == null) {
 initComponents();
 }
 synthesizer.speak(jsml, null);
 }
 /**
 * The getChoices() method returns an XML string with expected user
input
 * @return xml
 */
 public String getChoices() {
 return null;
 }
 /**
 * The getVoices() method creates a set of voices according to
initial age and gender parameters
 * The method checks if the voice if available.
 * If requested age or gender is not available the default voice
parameters are set.
 * @param gender
 * @param ages
 * @return voices
 */
 public Voice[] getVoices(int[] gender, int[] ages) {
 // make sure that at least default set
 if(gender == null) {
 gender = new int[1];
 gender[0] = GENDER_DONT_CARE;
 }
 if(ages == null) {
 ages = new int[1];
 ages[0] = AGE_DONT_CARE;
 }
 Voice[] voices = new Voice[ages.length * gender.length]; // all
combinations
 SynthesizerModeDesc desc = new
SynthesizerModeDesc(Locale.ENGLISH);
 Voice[] availableVoices = desc.getVoices();
 // try to set requested voices
 for (int i = 0; i < ages.length; i++) {
 for (int j = 0; j < gender.length; j++) {
 int k=(i+1)*j; // current voice index
 // try to set voice according to requirements
 // and check availability
 boolean available = false;
 // start from gender
 voices[k].setGender(gender[j]);
 for(int n=0; !available && n<availableVoices.length; n+
+) {
 if (voices[k].match(availableVoices[n])) {
 available = true;
 }
 }
 if(!available) {
 voices[k].setGender(GENDER_DONT_CARE);
 }

 // continue with ages
 voices[k].setAge(ages[i]);
 for(int n=0; !available && n<availableVoices.length; n+
+) {
 if (voices[k].match(availableVoices[n])) {
 available = true;
 }
 }
 if(!available) {
 voices[k].setAge(AGE_DONT_CARE);
 }
 }
 }
 // at this point all requested voices set to requested
parameters or to default
 return voices;
 }
} // end of the class

[Fig.12-5]

With the source code presented in Fig.12-4, the getJSMLText() method can be
implemented as a single line that concatenates the header, the transformed
body, and the footer of the JSML string.

The play() method uses the factory properties to present the JSML content. The
play() method starts by checking whether the synthesizer is ready to talk. Then it
uses the synthesizer object to invoke its speak() method, passing the JSML
string as one of the arguments.

The other argument is a SpeakableListener object. This object can be used to
receive and handle events associated with the spoken text. We do not plan to
use the SpeakableListener object in our example, so we passed the null object
as the second argument. It is possible to use the normal mechanisms for
attachment and removal of listeners with addSpeakableListener() and
removeSpeakableListener() methods.

Speech Recognition with Java

Speech technologies are not limited by speech synthesis. Speech recognition
technologies have matured to the point that the default message “Please repeat
your selection” is not so commonplace anymore, and human-computer
conversation can go beyond multiple-choice menus.

There are recognizer programs for personal usage, corporate sales, and other
purposes. Most personal recognizers support dictation mode. They are speaker-
dependent, requiring “program training” that creates a "speaker profile" with a
detailed map of the user's speaking patterns and accent. Then the program uses
this map to improve recognition accuracy.

The Java Speech API offers a Recognizer that may, optionally, provide a
SpeakerManager object that allows an application to manage the
SpeakerProfiles of that Recognizer. The getSpeakerManager() method of the
Recognizer interface returns the SpeakerManager if this option is available for
this Recognizer. Recognizers that do not maintain speaker profiles - known as
speaker-independent recognizers - return null for this method.

A single recognizer may have multiple SpeakerProfiles for one user, and may
store the profiles of multiple users.

The SpeakerProfile class is a reference to data stored with the recognizer. A
profile is identified by three values: its unique id, its name, and its variant. The id
and the name are self-explanatory. The variant identifies a particular enrollment
of a user, and becomes useful when one user has more than one enrollment, or
SpeakerProfile.

Additional data stored by a recognizer with the profile might include:
• Speaker data such as name, age, gender, etc.
• Speaker preferences
• Data about the words and word patterns of the speaker (language models)
• Data about the pronunciation of words by the speaker (word models)
• Data about the speaker's voice and speaking style (acoustic models)
• Records of previous training and usage history.

Speech recognition systems (SRS) can listen to users and, to some degree,
recognize and translate their speech to words and sentences. Current speech
technologies have to constrain speech context with grammars. Today, the
systems can achieve “reasonable” recognition accuracy only within these
constraints.

The Java Speech Grammar Format.

The JavaTM Speech Grammar Format (JSGF) [4] is a platform and vendor
independent way of describing a rule grammar (also known as a command and
control grammar or regular grammar).

A rule grammar specifies the types of utterances a user might say. For example,
a service control grammar might include “Service,” and "Action” commands.

A voice application can be based on a set of scenarios. Each scenario knows the
context and provides appropriate grammar rules for the context.

Grammar rules can be provided in multi-lingual manner. For example:

<greetings.english.hello>
<greetings.russian.privet>

<greetings.deutsch.gutenTag>

“Hello,” “Privet,” and “GutenTag” are tokens in the grammar rules. Tokens define
expected words that may be spoken by a user. The world of tokens forms a
vocabulary or lexicon. Each record in the vocabulary defines the pronunciation of
the token.

A single file defines a single grammar with its header and body. The header
defines the JSGF version and (optionally) encoding. For example:

#JSGF V1.0 ISO8859-5;

The grammar starts with the grammar name and is similar to java package
names. For example:

grammar com.its.scenarios.examples.greetings;

We can also import grammar rules and packages as is usually done in Java
code:

import <com.its.scenarios.examples.cyc.*> ; // talk to knowledge base

The grammar body defines rules as a rule name followed by its definition-token.
The definition can include several alternatives separated by “|” characters.

For example:

<login> = login ;
<find> = find | search | get | lookup ;
<new> = new | create | add ;
<command> = <find> | <new> | <login> ;

We can use the Kleene star (after Stephen Cole Kleene, originator) or the “+”
character to set expectations that user can repeat a word multiple times.

<agree> = I * agree | yes | OK ; // “I agree” and “agree” - both covered
<disagree> = no + ; // no can be spoken 1 or more times

The Kleene star and the plus operator are both unary operators in the JSGF.
There is also the tag unary operator that helps to return application-specific
information as the result of recognition.

For example:

<service> = (mail | email) {email} | (search | research | find) {find} ;

The system returns the word “email” if “mail” or “email” was spoken. In the case
when one of the words “search,” “research,” or “find” was spoken, the system
returns the word “find.”

The mainstream of speech recognition technologies lies outside of the Java
Speech API today. (This may be different next year.) One example is the open
source Sphinx [5] project written in C++ by a group from Carnegie Mellon
University.

In the Sphinx system, recognition takes place in three passes (the last two are
optional): lexical-tree Viterbi search, flat-structured Viterbi search, and global
best-path search.

Improving Sphinx recognition rate with training.

Sphinx can be trained to better satisfy a specific client with the SphinxTrain
program. Even after training, the rate of accuracy for Sphinx II is about 50%, and
for Sphinx 3 delivered at the end of 2002, the rate is about 70%. In comparison,
the rate of accuracy in Microsoft’s Speech SDK recognition engine is 95% after
voice training and microphone calibration.

Microsoft Speech Software Development Kit

The Microsoft Speech Software Development Kit (SDK) [6] is based on the
Microsoft Speech API (SAPI), a layer of software that allows applications and
speech engines to communicate in a standardized way. The MS Speech SDK
provides both text-to-speech (TTS) and speech recognition (SR) functionality.

Fig.12-6, below, illustrates the TTS synthesis process.

[Fig.12-6]

The main blocks that participate in the text-to-speech conversion are:

ISpVoice - The interface, which is used by the application to access TTS
functionality

ISpTTSEngineSite - The engine interface to speak data and queue events

IspObjectWithToken - The interface to create and initialize the engine

ISpTTSEngine - The interface to call the engine

IspTokenUI - The way for the SAPI control panel to access the User Interface

The Speech Recognition Architecture looks even simpler in Fig.12-7 below.

[Fig.12-7]

The main speech recognition blocks interact in the following way.

1. The engine uses the ISpSREngineSite interface to call SAPI to read
audio, and returns recognition results.

2. SAPI calls the engine using the methods of the ISpSREngine interface to
pass details of recognition grammars. SAPI also uses these methods to
start and stop recognition.

3. The IspObjectWithToken interface provides a mechanism for the engine to
query and edit information about the object token.

4. ISpTokenUI represents User Interface components that are callable from
an application.

SAPI 5 synthesis markup is not exactly SSML; it is closer to the format
published by the SABLE Consortium. SAPI XML tags provide functionality such
as volume control and word emphasis. These tags can be inserted into text

passed into ISpVoice::Speak and text streams of format SPDFID_XML, which
are then passed into ISpVoice::SpeakStream and auto-detected (by default) by
the SAPI XML parser. In the case of an invalid XML structure, a speak error may
be returned to the application. We can change rate and volume attributes in real
time using ISpVoice::SetRate and ISpVoice::SetVolume.

Volume

The Volume tag controls the volume of a voice and requires just one attribute:
Level; an integer between zero and one hundred. The tag can be empty to apply
to all following text, or it can frame a content, to which alone it applies.

<volume level="50">This text should be spoken at volume level fifty.

 <volume level="100">
 This text should be spoken at volume level one hundred.
 </volume>

</volume>

<volume level="80"/>All text which follows should be spoken at volume level
eighty.

Rate

The Rate tag defines the rate of a voice with one of two attributes, Speed and
AbsSpeed. The Speed attribute defines relative increase or decrease of the
speed value, while AbsSpeed defines its absolute rate value; an integer between
negative ten and ten. The tag can be empty to apply to all following text, or it can
frame content to which alone it applies.

<rate absspeed="5">
 This text should be spoken at rate five.
 <rate speed="-5">
 Decrease the rate to level zero.
 </rate>
</rate>
<rate absspeed="10"/> Speak the rest with the rate 10.

Pitch

In a very similar manner, the Pitch tag controls the pitch of a voice with one of
two attributes, Middle and AbsMiddle; an integer between negative ten and ten
can represent an absolute as well as relative value.

<pitch absmiddle="5">

This text should be spoken at pitch five.
 <pitch middle="-5">
 This text should be spoken at pitch zero.
 </pitch>
</pitch>
<pitch absmiddle="10"/> All the rest should be spoken at pitch ten.

Zero represents the default level for rate, volume, and pitch values.

Emph

The Emph tag instructs the voice to emphasize a word or section of text. The
Emph tag cannot be empty.

Your <emph>American Airline </emph> flight departs at <emph>eight </emph>
tonight

Voice

The Voice tag defines a voice based with its Age, Gender, Language, Name,
Vendor, and VendorPreferred attributes, that can be Required and Optional.
These correspond exactly to the required and optional attributes parameters to
ISpObjectTokenCategory_EnumerateToken and SpFindBestToken functions.

If no voice is found that matches all of the required attributes, no voice change
will occur. Optional attributes are treated differently. In this case, the exact match
is not necessarily expected. A voice that is closer to the provided attributes will
be selected over one that is less similar.

Example:

The default voice should speak this sentence.
<voice required="Gender=Female;Age!=Child">
A female non-child should speak this sentence, if one exists.
<voice required="Age=Teen">
 A teen should speak this sentence. If a female, non-child teen voice is present;
this voice will be selected over a male teen voice, for example.
 </voice>
</voice>

Let us consider a demonstration program that uses text-to-speech and speech
recognition facilities of the Microsoft Speech SDK.

Speech technology to decrease network bandwidth

The application is a conference between multiple clients over the Internet. The
application utilizes speech technology to significantly decrease network
bandwidth. Client programs intercept a user’s speech, translate it to text, and
send ASCII text over the Internet to the server-dispatcher. The server broadcasts
the text it receives to the other clients (a regular chat schema). Client programs
receive text from the server and convert it back to speech.

Fig.12-8 illustrates the application with a diagram.

[Fig.12-8]

More details:

- Speech recognition and TTS is done on the client side
- The client recognizes a phrase
- Plain text is transmitted between the client and the server
- The client program appends meta-data like the user’s name in SSML format
- The server side can be implemented in C++, C#, or Java, using TCP/IP
sockets

An example of the TalkingClient program can be found in Fig.12-9.cpp

/*****************
TalkingClient.cpp
*****************/
#include <iostream>
#include "Socket.h"

#include <windows.h>
#include <sapi.h>

#include <stdio.h>
#include <string.h>
#include <atlbase.h>
#include "sphelper.h"

using namespace std;

// Provided by Deena Malkina with use and modification of Microsoft Speech SDK examples

inline HRESULT ReadVoiceData(ISpRecoContext * voiceDataContext, ISpRecoResult **
recognitionData)
{
 HRESULT successLevel = S_OK;
 CSpEvent speechEvent;

 while (SUCCEEDED(successLevel) &&
 SUCCEEDED(successLevel = speechEvent.GetFrom(voiceDataContext)) &&
 successLevel == S_FALSE)
 {
 successLevel = voiceDataContext->WaitForNotifyEvent(INFINITE);
 }

 *recognitionData = speechEvent.RecoResult();
 if (*recognitionData)
 {
 (*recognitionData)->AddRef();
 }

 return successLevel;
}

int main(int argc, char* argv[])
{
 HRESULT successLevel = E_FAIL;
 // user name can be obtained from argv[1] or from system.properties
 const WCHAR * userName = L"Deena"; // from user profile
 const WCHAR * userGender = L"Female"; // from user profile
 const WCHAR * userAge = L"Teen"; // from user profile
 const WCHAR * voiceTag = sprintf(
 "<voice optional=\"Gender=%s;Age=%s;Name=%s\">",
 userGender,userAge,userAge);

 if(argc == 2) { // hopefully there is the voice profile on the name
 userName = argv[1];
 }
 try {
 // code to connect to recipient, for example, "ipserve.com, port=7445" via SocketClient
 SocketClient sender("ipserve.com",7445);
 // initialize Speech Engine
 if (SUCCEEDED(successLevel = ::CoInitialize(NULL)))
 {
 CComPtr<ISpRecoContext> context;
 CComPtr<ISpRecoGrammar> grammar;

 successLevel = context.CoCreateInstance(CLSID_SpSharedRecoContext);

 if (context &&
 SUCCEEDED(successLevel = context->SetNotifyWin32Event()) &&
 SUCCEEDED(successLevel = context->SetInterest(SPFEI(SPEI_RECOGNITION),
SPFEI(SPEI_RECOGNITION))) &&
 SUCCEEDED(successLevel = context->SetAudioOptions(SPAO_RETAIN_AUDIO,
NULL, NULL)) &&
 SUCCEEDED(successLevel = context->CreateGrammar(0, &grammar)) &&
 SUCCEEDED(successLevel = grammar->LoadDictation(NULL, SPLO_STATIC)) &&
 SUCCEEDED(successLevel = grammar->SetDictationState(SPRS_ACTIVE)))
 {
 USES_CONVERSION;

 // define the break signal that will send the sentence to the server
 const WCHAR * const breakSign = L"okey";
 const WCHAR * const exitSign = L"exit the program";
 CComPtr<ISpRecoResult> resultObject;

 printf("You can start talking.\nSay \"%s\" to send your phrase.\n",
 W2A(breakSign));

 while (SUCCEEDED(successLevel = ReadVoiceData(context, &resultObject)))
 {
 grammar->SetDictationState(SPRS_INACTIVE);

 CSpDynamicString resultingText;

 if (SUCCEEDED(resultObject->GetText(SP_GETWHOLEPHRASE,
SP_GETWHOLEPHRASE,
 TRUE, &resultingText, NULL)))
 {
 printf("Said by %s: %s\n", W2A(userName), W2A(resultingText));

 // send text to server: voiceTag + resultingText + "</voice>";
 char * textToSend = sprintf("%s%s</voice>", voiceTag,resultingText);
 sender.SendLine(textToSend);

 resultObject->SpeakAudio(NULL, 0, NULL, NULL);
 resultObject.Release();
 }
 if (_wcsicmp(resultingText, breakSign) == 0)
 {
 break;
 }

 grammar->SetDictationState(SPRS_ACTIVE);
 }
 }
 } catch(const char * e) {
 cerr << e <<endl;
 }
 ::CoUninitialize();
 }
 return successLevel;
}

[Fig.12-9]

The TalkingClient program takes user’s name as an optional argument. If the
argument is not provided, the “default” voice will be used.

The main routine starts with the socket connection to a recipient. We then
initialize the speech engine and define the break signal that will be used to
indicate when to send to the server what the user has said. In the example, the
break signal is the word “okay.”

The main processing happens in the while loop. The speech engine recognizes
the user’s sentence and prints it on the screen. Then the program sends the
resulting text to the server with the additional SAPI XML Voice tag:

<voice optional="Gender=userGender;Age=userAge;Name=userName">
resultingText</voice>

The other part of the application is presented in Fig.12-10.cpp
/**
 * ListeningClient.cpp
 * By Deena.Malkina@javaschool.com
 * with use and modification of Microsoft Speech SDK examples
 */
#include "Socket.h"
#include <string>
#include <iostream>
#include <windows.h>
#include <sapi.h>
#include <stdio.h>

#define _ATL_APARTMENT_THREADED
#include <atlbase.h>
//You may derive a class from CComModule and use it if you want to override something,
//but do not change the name of _Module
extern CComModule _Module;
#include <atlcom.h>

#include <string.h>
//#include <atlbase.h>
#include "sphelper.h"

using namespace std;

int main() {
 const string machine="javaschool.com";
 const int port=7554;

 ISpVoice * pVoice = NULL;

 if (FAILED(::CoInitialize(NULL)))
 return FALSE;

 HRESULT hr = CoCreateInstance(
 CLSID_SpVoice, NULL, CLSCTX_ALL, IID_ISpVoice, (void **)&pVoice);

 try {
 SocketClient s(machine, port);
 String textToSpeak;

 if(SUCCEEDED(hr)) {
 while (1) {
 // read one char at a time
 String c = s.ReceiveChar();
 if (c.empty()) break;

 cout << c;
 cout.flush();

 if(c=="." || c=="!" || c=="?") {
 // transform textToSpeak to WCHAR

 hr = pVoice->Speak(textToSpeak, 0, NULL);
 } else {
 textToSpeak.append(c);
 }
 } // end of while loop
 pVoice->Release();
 pVoice = NULL;
 }
 // Reset or Uninitialize
 ::CoUninitialize();
 } catch (const char* s) {
 cerr << s << endl;
 } catch (String s) {
 cerr << s << endl;
 } catch (...) {
 cerr << "unhandled exception\n";
 }
 char q;
 cin>>q;
 return TRUE;
}

[Fig.12-10]

The ListeningClient requirements:

- Receive text from the server
- Transform text to speech using the voice profile if available

The ListeningClient program starts in a very similar manner. It uses the
ReceiveLine method of the SocketClient to listen to messages coming from the

server. The program converts every unit of speech into voice and displays the
line on the screen.

Examples of Socket classes for Windows can be found online [7].

Appendix 3, Sources, provides examples of text-to-speech and speech
recognition programs written in C# using SAPI5.

Standards for scenarios for speech applications

Let us stop this overview of the parts of speech recognition technology for a
minute. They are all important. At the same time, some of them are more
important for system programmers who do the groundwork. Others pieces of the
technology target application developers. Application developers can use this
groundwork to describe application flow and write interpretation scenarios.

Our next step is to write scenarios for speech applications. Let us consider
current and upcoming standards that can help. Note that the Microsoft .NET
Speech SDK uses SSML, which is a part of W3C Speech Interface Framework
(unlike the Microsoft Speech SDK that uses SAPI XML). SSML is a markup
language to define text-to-speech processing, which is the simplest part of
speech technology. There are two markup languages able to describe a
complete speech interface: Speech Application Language Tags (SALT) [8], a
relatively new upcoming standard, and VoiceXML [9], a well established
technology with multiple implementations.

VoiceXML was developed for telephony applications as a high-level dialog
markup language that integrates speech interface with data and control flow.

Unlike VoiceXML, SALT offers a lower level interface that strictly focuses on
speech tags, but targets multiple devices, including but not limited to telephone
systems.

VoiceXML, as well as SALT, uses such standards of the W3C Speech Interface
Framework as SSML and Speech Recognition Grammar Standard (SRGS) [10].
SALT also includes recommendations on Natural Language Semantics Markup
Language (NLSML) [11] as a recognition result format, and Call Control XML
(CCXML) [12] as a call control language.

In a nutshell: NLSML is an XML-based markup for representing the meaning of a
natural language utterance, and CCXML provides telephony call control support
for VoiceXML or SALT, and other dialog systems.

NLSML uses an XForms data model for the semantic information being returned
in the interpretation. (See NLSML and XForms overviews in the Appendix 2, XML
Crossroads.)

SALT provides facilities for multi-modal applications that can include not only
voice but also screen interfaces. SALT also gives developers the freedom to
embed SALT tags into other languages. This allows for more flexibility in writing
speak-and-display scenarios.

Speech Application Language Tags

SALT consists of a relatively small set of XML elements. Each XML element has
associated attributes and DOM object properties, events and methods. One
can write speech interfaces for voice-only and multi-modal applications using
SALT with HTML, XHTML, and other standards. SALT controls dialog
scenarios through the DOM event model that is popular in web software.

Three top-level elements in SALT are: <listen …>, <prompt…>, and <dtmf..>.
First two XML elements define speech engine parameters.

<listen …> configures the speech recognizer, executes recognitions, and
handles speech input events

<prompt …> configures the speech synthesizer and plays out prompts

The third XML element plays a significant role in call controls for telephony
applications

<dtmf …> configures and controls dual-tone multi-frequency (DTMF) signaling in
telephony applications. Telephony systems use DTMF to signal which key has
been pressed by a client. Regular phones usually have 12 keys: ten decimal digit
keys, and additional "#", and "*" keys. Each key corresponds to a different pair of
frequencies.

The listen and the dtmf element may contain <grammar> and <bind> elements.
The listen element can also include the <record> element.

The <grammar> element defines grammars. A single <listen> element can
include multiple grammars. The <listen> element can have methods to activate
an individual grammar before starting recognition. SALT itself is independent of
the grammar formats, but for interoperability it recommends supporting at least
the XML form of the W3C Speech Recognition Grammar Specification.

The <bind> element can inspect the results of recognition and provide conditional
copy-actions. The <bind> element can cause the relevant data to be copied to
values in the containing page. A single <listen> element may contain multiple
binds. <bind> can have a conditional test attribute as well as a value attribute.
<bind> uses XPath (see Appendix-XML on Xpath and other XML standards
mentioned in the book) syntax in its value attribute to point to a particular node of
the result. <bind> uses an XML pattern query in its conditional test attribute. If the

condition is true, the content of the node is bound into the page element specified
by the targetElement attribute. The onReco event handler with script
programming can provide even more complex processing. The <onReco> and
the <bind> elements are triggered on the return of a recognition result.

The <record> element can specify parameters related to speech recording.
<bind> or scripted code can process the results of recording, if necessary.

A spoken message scenario

Fig.12-11.xml demonstrates a scenario in which dialog flow is provided with a
client-side script.
<!-- HTML -->
<html xmlns:salt="urn:saltforum.org/schemas/020124">
 <body onload="askForService()">
 <form id="messageForm"
 action="http://javaschool.com/school/public/knowledge/SALT/message"

 method="post">
 <input name="fromTextBox" type="text" />
 <input name="subjectTextBox" type="text" />
 <input name="recipientTextBox" type="text" />
 <input name="messageTextBox" type="text" />
 </form>

<!-- Speech Application Language Tags -->
 <salt:prompt id="askName"> What is your name? </salt:prompt>
 <salt:prompt id="askSubject"> What is the subject? </salt:prompt>
 <salt:prompt id="askRecipient"> Who is the recipient? </salt:prompt>
 <salt:prompt id="askMessage"> What is your message? </salt:prompt>
 <salt:prompt id="repeatDefault" onComplete="askForService()">
Please repeat your answer.
 </salt:prompt>
 <salt:listen id="nameRecognition"
 onReco="setName()" onNoReco="repeatDefault.Start()">
 <salt:grammar src="spokenMessage.xml" />
 </salt:listen>
 <salt:listen id="subjectRecognition"
 onReco="setSubject()" onNoReco="repeatDefault.Start()">
 <salt:grammar src="spokenMessage.xml" />
 </salt:listen>
 <salt:listen id="recipientRecognition"
 onReco="setRecipient()" onNoReco="repeatDefault.Start()">
 <salt:grammar src="spokenMessage.xml" />
 </salt:listen>
 <salt:listen id="messageRecognition"
 onReco="setMessage()" onNoReco="repeatDefault.Start()">
 <salt:grammar src="spokenMessage.xml" />
 </salt:listen>

<!-- script -->
 <script>
 // settings are based on user's answers
 function setName() {

 messageForm.fromTextBox.value = nameRecognition.text;
 askForService();
 }
 function setSubject() {
 messageForm.subjectTextBox.value = subjectRecognition.text;
 askForService();
 }
 function setRecipient() {
 messageForm.recipientTextBox.value = recipientRecognition.text;
 askForService();
 }
 function setMessage() {
 messageForm.messageTextBox.value = messageRecognition.text;
 messageForm.submit();
 }

 // the main script
 function askForService() {
 if messageForm.fromTextBox.value=="") {
 askName.Start();
 nameRecognition.Start();
 } else if (messageForm.subjectTextBox.value=="") {
 askSubject.Start();
 subjectRecognition.Start();
 } else if (messageForm.recipientTextBox.value=="") {
 askRecipient.Start();
 recipientRecognition.Start();
 } else if (messageForm.messageTextBox.value=="") {
 askMessage.Start();
 messageRecognition.Start();
 }
 }
 </script>
 </body>
</html>

[Fig.12-11]

The scenario is actually an HTML page with embedded SALT tags and script
functions. The askForService() script activates the SALT <listen> and <prompt>
tags. For example, askName.Start() prompts the user with, “What is your
name?”, and the following nameRecognition.Start() examines the recognition
results. The askForService() script executes the relevant prompts and
recognitions until all values are obtained. Successful message recognition
triggers the submit() function, which submits the message to the recipient.

The user’s name can serve not only as the user’s signature, but can also invoke
a chosen voice profile, if available, on recipient’s side.

Did you notice the reference to the spokenMessage.xml grammar file that
supports the scenario in the code? How do we define grammar?

Grammar Definition

First, let us look into the existing Command and Control features of the MS
Speech SDK. The Command and Control features of Speech API 5 (SAPI 5) are
based on context-free grammars (CFGs). A CFG defines a specific set of words,
and the sentences that are valid for recognition by the speech recognition (SR)
engine.

The CFG format in SAPI 5 uses XML to define the structure of grammars and
grammar rules. SAPI 5-compliant SR engines expect grammar definitions in a
binary format produced by any CFG/Grammar compiler; for example, gc.exe, the
SAPI 5 grammar compiler that is included in the Speech SDK. Compilation is
usually done before application run-time, but can be done at run-time.

Here is an example of a file that provides grammar rules to navigate through mail
messages (“next”, “previous”) and to retrieve the currently selected email
(“getMail”).

<GRAMMAR LANGID="409">
 <DEFINE>
 <ID NAME="VID_MailNavigationRules" VAL="1"/>
 <ID NAME="VID_MailReceiverRules" VAL="2"/>
 </DEFINE>
 <RULE ID="VID_MailNavigationRules" >
 <L>
 <P VAL="next">

 <o>Please *+</o>
<p>next</p>
<o>message\email\mail</o>

 </P>
 <P VAL="previous">

 <o>Please *+</o>
<p>previous\last\back</p>
<o>message\email\mail</o>

 </P>
 </L>
 </RULE>
 <RULE ID="VID_MailReceiverRules" TOPLEVEL="ACTIVE">
 <O>Please</O>
 <P>
 <L>
 <P val="getMail">Retrieve</P>
 <P val="getMail">Receive</P>
 <P val="getMail">Get</P>
 </L>
 </P>
 <O>the mail</O>
 </RULE>
</GRAMMAR>

Appendix3, Sources, provides more examples (along with C# program source
code) for a speech application based on SAPI5. The grammar file can be
dynamically loaded and compiled at run-time. This would decrease the number of
choices for any current recognition, and improve recognition quality.

VoiceXML

The last but definitely not the least important technology on the list is VoiceXML.
Although SALT and VoiceXML have different targets, in some ways they
compete in the speech technology arena. Unlike SALT, which is relatively new,
VoiceXML started in 1995, within an AT&T project called Phone Markup
Language (PML).

The VoiceXML Forum was formed in 1998-1999 by AT&T, IBM, Lucent, and
Motorola. At that time Motorola had developed VoxML, and IBM was developing
its own SpeechML. The VoiceXML Forum helped integrate the efforts. Since then
VoiceXML had a history of successful implementations by multiple vendors.

Unlike SALT, which is a royalty-free upcoming standard, VoiceXML can be
subject to royalty payments. Several companies, including IBM, Motorola, and
AT&T, have indicated that they could have patent rights in VoiceXML.

This brief overview of VoiceXML is based on the VoiceXML2.0 Specification
submitted to W3C in the beginning of 2003.

What is VoiceXML?

VoiceXML is designed for creating dialog scenarios with digitized audio, speech
recognition, and DTMF key input. VoiceXML can record spoken input, telephony,
and mixed initiative conversations. The mixed conversation is an extended case
of the most common type of computer-human conversations directed by the
computer. The main target of VoiceXML is web-based development and content
delivery to interactive speech applications.

The VoiceXML interpreter renders VoiceXML documents audibly, just as a web
browser renders HTML documents visually. However,
standard web browsers run on the local machine, whereas the VoiceXML
interpreter runs at a remote hosting site.

Fig.12-12 displays the enterprise application with multi-modal access to business
services.

[Fig.12-12]

Like HTML web pages, VoiceXML documents have web URLs and can be
located on any web server.
VoiceXML pages deliver the service content via speech applications using
computer telephony protocols like JTAPI, TAPI, H.323 and SIP (Session Initiation
Protocol, most widely accepted by the industry)

Main components of speech recognition systems.

Speech Recognition Systems (SRS) in general and VoiceXML systems in
particular rely on high-performance server side hardware and software located
on or connected to the web container. The web container is the architecture tier
responsible for correspondence to clients over HTTP and dispatching client
requests to proper business services. In this case, speech recognition services
become the client that intercepts voice flow and translates it into HTTP streams.
The key hardware factors for delivering reliable, scalable VoiceXML applications
are:

- Telephony Connectivity
- Internet Connectivity
- Scalable Architecture

- Caching and Media Streaming
- CODECs - combinations of analog to digital (A/D) with digital to analog

(D/A) signal converters

Progress in hardware technologies such as the high-speed, low-power
consumption digital signal processor (DSP) has substantially contributed to
improving CODEC conversion efficiency.

The SRS platform contains intelligent caching technology that minimizes network
traffic by caching VoiceXML, audio files, and compiled grammars.
The VXML Platform makes extensive use of load balancing, resource pooling,
and dynamic resource allocation.
SRS servers use multi-threaded C++ implementations, delivering the most
performance from available hardware resources.
To prevent unnecessary re-compilation of grammars, the VoiceXML platform
uses a high-performance indexing technique to cache and re-use previously
compiled grammars.

Voice services offer the following software components to implement an end-to-
end solution for phone-accessible Web content:

Telephony platform - software modules for text-to-speech, voice recognition,
menuing system, parsing engines and DTMF

Briefly about the main telephony protocols:
JTAPI: The Java Telephony API supports telephony call control from consumer
devices to call centers.
TAPI: The Telephony Application Programming Interface was created by
Microsoft and Intel to provide computer telephony services
H.323: This standard for call signaling, multimedia transport and control is widely
implemented for point-to-point and multi-point voice and videoconferencing over
Integrated Services Digital Network (ISDN), Public Switched Telephone Network
(PSTN) or Signaling System 7 (SS7), and 3G mobile networks.
SIP: The Session Initiation Protocol is commonly used for voice and video calls
over Internet Protocol.

Open Standards support - Open system architecture in compliance with industry
standards. VoiceXML, WAP, WML, XHTML, SSML, SRGS, NLSML, etc.

WAP solution - Support for using Wireless Application Protocol to deliver web
and audio content to new web phones and enabling seamless integration
between web and audio content.

Voice application and activation - User interface and logic (such as
personalization) for accessing back-end audio content, and web and email
databases for easy phone access

What is the VoiceXML architecture and how does it work?

A document server (a Web server) contains VoiceXML documents or VXML
pages with dialog based scenarios. (I try to use the word “scenario” on every
other page, but sometimes the word sneaks in-between.)

The document server responds to a client request by sending the VoiceXML
document to a Speech Recognition System, or a VoiceXML implementation
platform (the VoiceXML interpreter). A voice service scenario is a sequence of
interaction dialogs between a user and an implementation platform.

Document servers perform business logic, database and legacy system
operations, and produce VoiceXML documents that describe interaction dialogs.
User input affects dialog interpretation by the VoiceXML interpreter. The
VoiceXML interpreter transforms user input into requests submitted to a
document server. The document server replies with other VoiceXML documents
describing new sets of dialogs.

What does the VoiceXML document look like?

A VoiceXML document can describe:

- Output of synthesized speech (text-to-speech).
- Output of audio files.
- Recognition of spoken input.
- Recognition of DTMF input.
- Recording of spoken input.
- Control of dialog flow.

The VoiceXML language requires a common grammar format, namely the XML
Form of the W3C Speech Recognition Grammar Specification (SRGS), to
facilitate interoperability.

A voice application is a collection of one or more VoiceXML documents sharing
the same application root document. A VoiceXML document is composed of one
or more dialogs. The application entry point is the first VoiceXML document that
the VoiceXML interpreter loads when it starts the application.
The developer’s task is to provide voice commands to the user in the most
comfortable way while offering clearly distinguished possibilities of responses
expected from the user through voice or/and telephone keys
.

There are two kinds of dialogs: forms and menus. Forms define an interaction
that collects field-values. Each field may specify a grammar with expected inputs
for that field. A menu commonly asks the user to choose one of several options,
and then uses the choice to transition to another dialog.

Fig.12-13.vxml presents a very simple example of a VoiceXML document.

<?xml version="1.0" encoding="UTF-8"?>
<vxml xmlns="http://www.w3.org/2001/vxml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/vxml
 http://www.w3.org/TR/voicexml20/vxml.xsd"
 version="2.0">
 <form>
 <field name="service">
 <prompt>Would you like to read your mail, send a message, or check your calendar?</prompt>
 <grammar src="com.its.services.grxml" type="application/srgs+xml"/>
 </field>
 <block>
 <submit next="http://javaschool.com/school/public/speech/vxml/service.jsp"/>
 </block>
 </form>
</vxml>

[Fig.12-13]

This VoiceXML document provides a form dialog that offers user a choice of
services to fill the service field. Expected answers are provided in the grammar
document “com.its.services.grxml”.

Each dialog has one or more speech and/or DTMF grammars associated with it.
Most of the speech applications today are machine directed. A single dialog
grammar is active at any current time for machine directed applications, the
grammar associated with a current user dialog. In mixed initiative applications,
the user and the machine alternate in determining what to do next. In this case,
more than one dialog grammar can be active, and the user can say something
that matches another dialog’s grammar. Mixed initiative adds flexibility and power
to voice applications.

VoiceXML can handle events not covered by the form mechanism described
above. There are default handlers for the predefined events; plus, developers
can override these handlers with their own event handlers in any element that
can throw an event. The platform throws events, for example, when the user
does not respond, does not respond intelligibly, requests help, etc.

The <catch>, <error>, <help>, <noinput>, and <nomatch> elements are
examples of event handlers.

For example, the catch element can detect a disconnect event and provide some
action upon the event:

 <catch event="connection.disconnect.hangup">
 <submit namelist="disconnect"
next="http://javaschool.com/school/public/speech/vxml/exit.jsp"/>
</catch>

Applications can support help by putting the help keyword in a grammar in the
application root document.

<help>

 <prompt>Say "Retry" to retry authorization, or "Register" to hear the registration
instructions. Say "Exit" or "Goodbye" to exit.
 </prompt>

 <listen/>
</help>

A list of VoiceXML elements

<assign> - Assign a variable a value

<audio> - Play an audio clip within a prompt

<block> - A container of (non-interactive) executable code

<catch> - Catch an event

<choice> - Define a menu item

<clear> - Clear one or more form item variables

<disconnect> - Disconnect a session

<else> - Used in <if> elements

<elseif> - Used in <if> elements

<enumerate> - Shorthand for enumerating the choices in a menu

<error> - Catch an error event

<exit> - Exit a session

<field> - Declares an input field in a form

<filled> - An action executed when fields are filled

<form> - A dialog for presenting information and collecting data

<goto> - Go to another dialog in the same or different document

<grammar> - Specify a speech recognition or DTMF grammar

<help> - Catch a help event

<if> - Simple conditional logic

<initial> - Declares initial logic upon entry into a mixed initiative form

<link> - Specify a transition common to all dialogs in the link’s scope

<log> - Generate a debug message

<menu> - A dialog for choosing amongst alternative destinations

<meta> - Define a metadata item as a name/value pair

<metadata> - Define metadata information using a metadata schema

<noinput> - Catch a noinput event

<nomatch> - Catch a nomatch event

<object> - Interact with a custom extension

<option> - Specify an option in a <field>

<param> - Parameter in <object> or <subdialog>

<prompt> - Queue speech synthesis and audio output to the user

<property> - Control implementation platform settings.

<record> - Record an audio sample

<reprompt> - Play a field prompt when a field is re-visited after an event

<return> - Return from a subdialog.

<script> - Specify a block of ECMAScript client-side scripting logic

<subdialog> - Invoke another dialog as a subdialog of the current one

<submit> - Submit values to a document server

<throw> - Throw an event.

<transfer> - Transfer the caller to another destination

<value> - Insert the value of an expression in a prompt

<var> - Declare a variable

<vxml> - Top-level element in each VoiceXML document

Fig.12-14.vxml introduces a typical VoiceXML document that initiates a brief
phone conversation.

<?xml version="1.0" encoding="UTF-8"?>
<vxml xmlns="http://www.w3.org/2001/vxml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/vxml
 http://www.w3.org/TR/voicexml20/vxml.xsd"
 version="2.0">

 <form id="training">
 <field name="course">
 <grammar type="application/srgs+xml" src="/grammars/training.grxml"/>
 <prompt>Which course do you want to take?
 Here is the list of courses:
 <!-- list of courses offered -->
 </prompt>

 <if cond="course == 'operator' ">
 <goto next="http://javaschool.com/school/public/speech/vxml/operator.vxml" />
 </if>

 <noinput>
 I could not hear you.
 <reprompt/>
 </noinput>

 <nomatch count="1">
 Please select any Java, Wireless, or Ontology course from the list.
 <reprompt/>
 </nomatch>

 <nomatch count="2">
 <prompt>
 I am sorry, we have almost so many types of training courses but not this one.

 I would recommend you to start with the Ontology Introduction course at this time.
 </prompt>
 </nomatch>

 <nomatch count="3">
 I switch you to the operator.
 Hopefully you will find the course you want.
 Good luck.
 <goto next="http://javaschool.com/school/public/speech/vxml/operator.vxml" />
 </nomatch>

 </field>

 <block>
 <submit next="http://javaschool.com/school/public/speech/vxml/training.jsp"/>
 </block>
 </form>
</vxml>

[Fig.12-14]

The source code starts with the standard XML, and then has VXML reference
lines. The next thing we see is a form that looks almost exactly like an HTML
form. In fact, the form has exactly the same purpose – to collect information from
a user into the form fields. This form has a single field named “course.”

The program prompts the user to choose one of the training courses.

 <prompt>Which course do you want to take?</prompt>

The grammar line above the prompt defines a grammar rules file that will try to
resolve the answer.

 <grammar type="application/srgs+xml" src="/grammars/training.grxml"/>

The user might want to talk to a human being. In this case, the grammar rules
might resolve user’s desire and return the “operator” word as the user’s selection.

The program uses an <if> element to check on this condition.

 <if cond="course == 'operator' ">

If this condition is true, the program will use the <goto> element to jump to
another document that transfers the caller to the operator.

Note that all tags are properly closed, as should be done in any XML file.

Looking down the code below the “if” element, we find <noinput> and <nomatch>
event handlers. If the user produces no input during the default time, the program
plays the prompt again using the <reprompt/> element.

 <noinput>
 I could not hear you.
 <reprompt/>
 </noinput>

The most interesting script starts when a user selection is not expected. In this
case, the <nomatch> event handler is fired. This element can optionally have a
counter, which we use here to try to provide a more appropriate response, and
possibly decrease the user’s discomfort.

The very first “nomatch” element will provide an additional hint to the user and
reprompt the original message.

 <nomatch count="1">
 Please select a Java, Wireless, or Ontology course from the list.
 <reprompt/>
 </nomatch>

The next time the user makes a strange selection, the program offers its candid
advice.

 <nomatch count="2">
 <prompt>
 I am sorry, we have so many types of training courses, but not this one.
 I would recommend for you to start with the Ontology Introduction course at
this time.
 Will that work for you?
 </prompt>
 </nomatch>

The third “nomatch” event will switch user to the operator.

<nomatch count="3">
 I will switch you to the operator.
 Hopefully, you will find the course you want.
 Good luck.
 <goto next="http://javaschool.com/school/public/speech/vxml/operator.vxml" />
 </nomatch>

But what if the user was successful in the course selection?

In this case, the selected course value will fill the “course” field and the value will
be submitted to the training page.

 <block>
 <submit next="http://javaschool.com/school/public/speech/vxml/training.jsp"/>
 </block>

The last two lines close the form and the VoiceXML document.

 </form>
</vxml>

Wow!

How does VoiceXML do the transfer operation? Here is the code.

 <!-- Transfer to the operator -->
 <!-- Say it first -->
 Transferring to the operator according your request.
 <!-- Play music while transfer -->
 <!-- Wait up to 60 seconds for the transfer -->
 <transfer dest="tel:+1-234-567-8901"
 transferaudio="music.wav" connecttimeout="60s">
 </transfer>

The code extract first says, “Transferring to the operator according to your
request,” and then actually tries to transfer the user to the operator. The transfer
element in our example turns on some music and sets the timeout to 60 seconds
for the transfer. There is also essential part of the transfer element – the
telephone number of the operator.

Here is another transfer example when program catches the “busy” event.

 <transfer maxlength="60" dest="8005558355">
 <catch event="event.busy">
 <audio> busy </audio>
 <goto next="_home"/>
 </catch>
</transfer>

The <link> element below navigates to mail.vxml whenever the user says "mail".

<link next="mail.vxml">
 <grammar type="application/srgs+xml" root="root" version="1.0">
 <rule id="root" scope="public">mail</rule>
 </grammar>

 </link>

This example provides in-line grammar rules, unlike most of following examples
where we reference gramar rules files.

The <subdialog> element helps to create reusable dialog components and
decompose an application into multiple documents.

<subdialog name="compose" src="newmail.vxml">
 <filled>
 <!-- The "compose" subdialog returns 3 variables below.
 These variables must be specified in the "return" element
 of the “compose” -->

 <assign name="to_address" expr=" compose.to_address"/>
 <assign name="subject" expr=" compose.subject"/>
 <assign name="message" expr=" compose.body"/>

 </filled>
 </subdialog>

Fig.12-15.vxml provides an example of the “new_mail” service request.

<?xml version="1.0" encoding="UTF-8"?>
<vxml xmlns="http://www.w3.org/2001/vxml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/vxml
 http://www.w3.org/TR/voicexml20/vxml.xsd"
 version="2.0">
 <form id="new_mail">
 <!-- two variables collected by the "compose" subdialog -->
 <var name="to_name"/>
 <var name="message"/>
 <subdialog name="compose" src="compose.vxml">
 <filled>
 <!-- The "compose" subdialog returns its status and two variables below.
 The status and other variables must be specified in the "return" element
 of the "compose" -->

 <if cond="compose.status == 'OK'">
 <assign name="to_name" expr="compose.to_name"/>
 <assign name="message" expr="compose.message"/>
 <else/>
 Sorry, the system cannot deliver the message.
 <exit/>
 </if>

 </filled>
 </subdialog>

 <field name="subject">

 <grammar type="application/srgs+xml" src="/grammars/mail_subject.grxml"/>
 <prompt>
 What is the subject of your message?
 </prompt>
 <filled>
 <submit next="http://javaschool.com/school/public/speech/send_mail.jsp"/>
 </filled>
 </field>
 </form>
</vxml>

[Fig.12-15]

The example uses the “compose” subdialog to fill two fields for the new mail
form. The “compose” subdialog returns its status and two requested fields. If the
returned status is not “OK,” the service says that the message cannot be
delivered and exits.

Otherwise, the service assigns returned values to the “to_name” and “message”
fields, and prompts the user for the message subject. It often happens that mail
goes out without any subject.

The subject can serve as communication meta-data, which makes even more
sense today when computer systems are increasingly involved in the
communication process. With this last field, the service is ready to rock-n-roll and
submits all the data to the long URL provided in the “submit” element.

The new_mail service listing also illustrates the usage of “if-else” elements with
the conditional actions described above.

Fig.12-16 displays the “compose” subdialog.

<?xml version="1.0" encoding="UTF-8"?>
<vxml xmlns="http://www.w3.org/2001/vxml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/vxml
 http://www.w3.org/TR/voicexml20/vxml.xsd"
 version="2.0">
 <form id="compose">

 <var name="status" expr="'not_known_name'"/>
 <field name="to_name">
 <grammar type="application/srgs+xml" src="/grammars/names.grxml"/>
 <prompt> What is your <prosody rate="-40%">recipient</prosody> name? </prompt>
 <help>
 Please say first and last name of your message recipient.
 First name first. For example: John Smith.
 <reprompt/>
 </help>
 <nomatch>
 <return namelist="status"/>

 </nomatch>
 </field>

 <field name="message">
 <grammar type="application/srgs+xml" src="/grammars/phone_numbers.grxml"/>
 <prompt> Provide your <emphasis>message now</emphasis> </prompt>
 </field>

 <block>
 <assign name="status" expr="'OK'"/>
 <return namelist="status to_name message"/>
 </block>

 </form>
</vxml>

[Fig.12-16]

In the “compose” dialog, the prompt asks for a recipient’s name. Apparently, the
grammar rules behind the scene are working hard to recover the email address
from the list of available names. The user can ask for help to hear more detailed
prompt messages. If the name recognition fails, the “nomatch” element returns
the status value “not_known_name”, back to the “new_mail” service.

In the best-case scenario, when the name recognition succeeds, the “compose”
dialog sets the status value to “OK” and prompts the user to fill (answer) the
“message” field. The “compose” dialog then returns the “OK” status and two
variables (the “to_name” and the “message”), back to the “new_mail” service.

The “forward_mail” service will reuse the same “compose” subdialog to collect
the “to_address” and “message” fields. Fig.12-17 shows the “forward_mail”
VoiceXML page.

<?xml version="1.0" encoding="UTF-8"?>
<vxml xmlns="http://www.w3.org/2001/vxml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/vxml
 http://www.w3.org/TR/voicexml20/vxml.xsd"
 version="2.0">
 <form id="forward_mail">
 <!-- two parameters related to the original mail passed from the mail_service -->
 <var name="subject"/>
 <var name="old_message"/>
 <!-- two variables collected by the "compose" subdialog -->
 <var name="to_name"/>
 <var name="message"/>
 <subdialog name="compose" src="compose.vxml">
 <filled>
 <!-- The "compose" subdialog returns its status and two variables below.
 The status and other variables must be specified in the "return" element
 of the "compose" -->

 <if cond="compose.status == 'OK'">
 <assign name="to_name" expr="compose.to_name"/>
 <assign name="message" expr="compose.message"/>

 <!-- use ECMAScript to prepare subject and body fields -->
 <!-- subject will start with "FW: " -->
 <!-- body will include not only current but also original "old_message" -->
 <return namelist="to_name subject message" />
 <else/>
 Sorry, the system cannot deliver the message.
 <exit/>
 </if>

 </filled>
 </subdialog>

 </form>
</vxml>

[Fig.12-17]

The “forward_mail” listing includes two additional variables: “subject” and
“old_message.” These variables passed as parameters extracted by the
“mail_service” dialog from the original mail. The “forward_mail” service behaves
similarly to the “new_mail” service.

If the “compose” subdialog returns an “OK” status with the two requested fields
(the “to_address” and the “message”), the “forward_mail” service will submit all
data, including the two additional fields (“subject” and “old_message”) that came
as parameters from the original email, to the final URL. If the status returned by
the “compose” subdialog is not as cheerful, the “forward_mail” service will not
forward the message but will exit instead.

Parameters can be passed with the <param> elements of a <subdialog>. These
parameters must be declared in the subdialog using <var> elements, as
displayed in Fig.12-17.

The “mail_service” dialog passes the parameters to the “forward_mail” service
with the following lines:

<form>
<subdialog name="forward_mail" src="forward_mail.vxml">
 <param name="subject" expr=" ‘ Hello’ "/>
 <param name=”old_message” expr=” ‘How are you?’ “/>
 <filled>
 <submit next="http://javaschool.com/school/public/speech/mail.jsp"/>
 </filled>
 </subdialog>
</form>

Looking into the PROMPT examples in Fig.12-16, we can see the tags we
learned before as SSML elements. No wonder. The VoiceXML 2.0 Specification
models the content of the <prompt> element based on the W3C Speech
Synthesis Markup Language 1.0 (SSML), and makes available the following
SSML elements:

<audio> - Specifies audio files to be played and text to be spoken.

<break> - Specifies a pause in the speech output.

<desc> - Provides a description of a non-speech audio source in <audio>.

<emphasis> - Specifies that the enclosed text should be spoken with emphasis.

<lexicon> - Specifies a pronunciation lexicon for the prompt.

<mark> - Ignored by VoiceXML platforms.

<metadata> - Specifies XML metadata content for the prompt.

<paragraph>(alias <p>) - Identifies the enclosed text as a paragraph, containing
zero or more sentences

<phoneme> - Specifies a phonetic pronunciation for the contained text.

<prosody> - Specifies prosodic information for the enclosed text.

<say-as> - Specifies the type of text construct contained within the element.

<sentence> (alias <s>) - Identifies the enclosed text as a sentence.

<sub> - Specifies replacement spoken text for the contained text.

<voice> - Specifies voice characteristics for the spoken text.

The following example in Fig.12-18.vxml uses the <record> element to collect an
audio recording from the user.

<?xml version="1.0" encoding="UTF-8"?>
<vxml version="2.0" xmlns="http://www.w3.org/2001/vxml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/vxml
 http://www.w3.org/TR/voicexml20/vxml.xsd">
 <form>
 <property name="bargein" value="true"/>

 <record name="msg" beep="true" maxtime="10s"

 finalsilence="3000ms" dtmfterm="true" type="audio/x-wav">
 <prompt timeout="5s">
 Record your audio message after the beep.
 </prompt>
 <noinput>
 I didn't hear anything, please try again.
 </noinput>
 </record>

 <submit next="http://javaschool.com/school/public/speech/recording.jsp"
 enctype="multipart/form-data" method="post" namelist="msg"/>

 </form>
</vxml>

[Fig.12-18]

This example also uses the bargein property that controls whether a user can
interrupt a prompt. Setting the bargein property to “true” allows the user to
interrupt the program, introducing a mixed initiative.

The program prompts the user to record her or his message. A reference to the
recorded audio is stored in the “msg” variable. There are several important
settings in the record element, including timeouts and DTMFTERM.

The recording stops under one of the following conditions: a final silence for more
than 3 sec occurs, a DTMF key is pressed, the maximum recording time, 10 sec,
is exceeded, or the caller hangs up. The audio message will be sent to the web
server via the HTTP POST method with the enctype="multipart/form-data”.

Another example, in Fig.12-19.vxml, demonstrates a VoiceXML feature that
allows the user to enter text messages using a telephone keypad.

<?xml version="1.0" encoding="UTF-8"?>
<vxml version="2.0" xmlns="http://www.w3.org/2001/vxml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/vxml
 http://www.w3.org/TR/voicexml20/vxml.xsd">
<form id="key_message">
 <object name="message"
 classid="builtin://keypad_text_input">
 <prompt>
 Enter your message with the telephone keys.
 Press star for a space, and the pound sign to end the message.
 </prompt>
 </object>

 <block>
 <assign name="document.key_message" expr="message.text"/>
 <goto next="#send_message"/>
 </block>
</form>

</vxml>

[Fig.12-19]

VoiceXML supports platforms with telephone keys. In the example above the
user is prompted to type the message. The <block> element copies the message
to the variable document.key_message.

This example shows the usage of the object element, a part of ECMAScript [13].

ECMAScript

Developed under the European Computer Manufacturers Association (ECMA),
ECMAScript was modeled after JavaScript but designed as application-
independent. The language was divided into two parts: a domain independent
core, and a domain specific object model. ECMAScript defines a language core,
leaving the design of domain object model to specific vendors.

An ECMAScript object, presented in the example, can have following attributes:

name - When the object is evaluated, it sets this variable to an ECMAScript value
whose type is defined by the object.

expr - The initial value of the form item variable; default is the ECMAScript value
“undefined”. If initialized to a value, then the form item will not be visited unless
the form item variable is cleared.

cond - An expression that must evaluate to true after conversion to boolean in
order for the form item to be visited.

classid - The URI specifying the location of the object’s implementation. The URI
conventions are platform-dependent.

codebase - The base path used to resolve relative URIs specified by classid,
data, and archive. It defaults to the base URI of the current document.

codetype - The content type of data expected when downloading the object
specified by classid. The default is the value of the type attribute.

data - The URI specifying the location of the object’s data. If it is a relative URI, it
is interpreted relative to the codebase attribute.

type - The content type of the data specified by the data attribute.

archive - A space-separated list of URIs for archives containing resources
relevant to the object, which may include the resources specified by the classid
and data attributes.

ECMAScript provides scripting capabilities for Web-based client-server
architecture and makes it possible to distribute computation between the client
and server. Each Web browser and Web server that supports ECMAScript
supports (in its own way) the ECMAScript execution environment.

Some of the facilities of ECMAScript are similar to Java and Self [14] languages.

An ECMAScript program is a cluster of communicating objects that consist of an
unordered collection of properties with their attributes. Attributes, like
“ReadOnly”, “DontEnum”, “DontDelete”, or “Internal”, determine how each
property can be used.

For example, the property with the “ReadOnly” attribute is not changeable and
not executable by ECMAScript programs, the “DontEnum” properties cannot be
enumerated in the programming loops, your attempts to delete the “DontDelete”
properties will be ignored, and the “Internal” properties are not directly accessible
via the property access operators.

ECMAScript properties are containers for objects, primitive values, or methods. A
primitive value is a member of one of the following built-in types: Undefined, Null,
Boolean, Number, and String.

ECMAScript defines a collection of built-in objects that include the following
object names: Global, Object, Function, Array, String (yes, there objects with the
same names as built-in primitive types), Boolean, Number, Math, Date, RegExp,
and several Error object types.

ECMAScript in VoiceXML documents

Fig.12-20.vxml presents ECMAScript embedded into the “forward_mail”
subdialog.

<?xml version="1.0" encoding="UTF-8"?>
<vxml xmlns="http://www.w3.org/2001/vxml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/vxml
 http://www.w3.org/TR/voicexml20/vxml.xsd"
 version="2.0">
 <form id="forward_mail">
 <!-- two parameters related to the original mail passed from the mail_service -->
 <var name="subject"/>
 <var name="old_message"/>
 <!-- two variables collected by the "compose" subdialog -->
 <var name="to_name"/>
 <var name="message"/>
 <subdialog name="compose" src="compose.vxml">
 <filled>
 <!-- The "compose" subdialog returns its status and two variables below.

 The status and other variables must be specified in the "return" element
 of the "compose" -->

 <if cond="compose.status == 'OK'">
 <assign name="to_name" expr="compose.to_name"/>
 <assign name="message" expr="compose.message"/>
 <!-- use ECMAScript to prepare subject and body fields -->
 <script>
 <![CDATA[
 subject = 'FW: ' + subject;
 message = message + '\n----- Original message ----\n' + old_message;
]]>
 </script>
 <!-- return all data -->
 <return namelist="to_name subject message" />
 <else/>
 Sorry, the system cannot deliver the message.
 <exit/>
 </if>

 </filled>
 </subdialog>

 </form>
</vxml>

[Fig.12-20]

Several lines of the ECMAScript give the final touch to the “forward_mail” dialog.
The subject of the forwarded message will start with “FW:“ and the body of the
message will include not only the current message provided by the user, but also
the original message that the user wants to forward to another recipient.

Grammar rules

According to the VoiceXML 2.0 Specification, platforms should support the
Augmented BNF (ABNF) Form of the W3C Speech Recognition Grammar
Specification, although VoiceXML platforms may choose to support grammar
formats other than SRGS.

The <grammar> element may specify an inline grammar or an external grammar.
Fig.12-21 demostrates an example of inline grammar.

<grammar mode="voice" xml:lang="en-US" version="1.0" root="training">
 <!-- Selection of one of the training courses -->
 <rule id="course" scope="public">
 <one-of>
 <item> Java Introduction </item>
 <item> Advanced Java </item>
 <item> Wireless Introduction </item>
 <item> Java Microedition </item>
 <item> Speech Technologies </item>

 <item> Ontology Introduction </item>
 <item> Integration Technologies </item>
 <item> Knowledge and Service Integration </item>
 <item> Natural User Interface </item>
 </one-of>
 </rule>
</grammar>

[Fig.12-21]

This simple example provides inline grammar rules for the selection of one of
many items.

In a similar manner, VoiceXML allows developer to provide DTMF grammar
rules.

<grammar mode="dtmf" weight="0.3"
src="http://javaschool.com/school/public/speech/vxml/dtmf.number"/>

The grammar above includes references to the dtmf grammar file. The extract
below shows inline dtmf grammar rules.

<grammar mode="dtmf" version="1.0" root="code">
 <rule id="root" scope="public">
 <one-of>
 <item> 1 2 3 </item>
 <item> # </item>
 </one-of>
 </rule>
</grammar>

The VoiceXML interpreter evaluates its own performance.

The application.lastresult$ variable holds information about the last
recognition. The application.lastresult$[i].confidence can vary from 0.0
to1.0. A value of 0.0 indicates minimum confidence

The application.lastresult$[i].utterance keeps the raw string of words (or
digits for DTMF)) that were recognized for this interpretation.

The application.lastresult$[i].inputmode stores the last mode value (dtmf or
voice).

The application.lastresult$[i].interpretation variable contains the last
interpretation result.

This self-evaluation feature can be used to provide additional
confirmational prompt when necessary.

<if cond="application.lastresult$.confidence < 0.7">
 <goto nextitem="confirmationdialog"/>
 <else/>

Resources and Caching

A VoiceXML interpreter fetches VoiceXML documents and other resources, such
as audio files, grammars, scripts, and objects, using powerful caching
mechanisms. Unlike a visual browser, a VoiceXML interpreter lacks end user
controls for cache refresh, which is controlled only through appropriate use of the
maxage and maxstale attributes in vxml documents.

The maxage attribute indicates that the document is willing to use content whose
age is no greater than the specified time in seconds. If the maxstale attribute is
assigned a value, then the document is willing to accept content that has
exceeded its expiration time by no more than the specified number of seconds.

Metadata

VoiceXML does not require metadata information. However, it provides two
elements in which metadata information can be expressed: <meta> and
<metadata>, with the recommendation that metadata is expressed using the
<metadata> element, with information in Resource Description Framework
(RDF).

Similarly to HTML, the <meta> element can contain a metadata property of the
document expressed by the pair of attributes, name and content.

<meta name="generator" content="http://JavaSchool.com"/>

The <meta> element can also specify HTTP response headers with http-equiv
and content attributes.

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

A VoiceXML document can include the <metadata> element using the Dublin
Core version 1.0 RDF schema [15].

Fig.12-22.vxml provides an example of a VoiceXML document with the
<metadata> element.

<?xml version="1.0" encoding="UTF-8"?>
<vxml version="2.0" xmlns="http://www.w3.org/2001/vxml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/vxml
 http://www.w3.org/TR/voicexml20/vxml.xsd">

<metadata>
 <rdf:RDF
 xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs = "http://www.w3.org/TR/1999/PR-rdf-schema-19990303#"
 xmlns:dc = "http://purl.org/metadata/dublin_core#">

<!-- Metadata about the VoiceXML document -->
 <rdf:Description about="http://javaschool.com/school/public/speech/vxml/training.vxml"
 dc:Title="Training Courses"
 dc:Description="Training Courses List"
 dc:Publisher="ITS"
 dc:Language="en"
 dc:Date="2003-05-05"
 dc:Rights="Copyright 2003 Jeff Zhuk"
 dc:Format="application/voicexml+xml" >
 </rdf:Description>
 </rdf:RDF>
 </metadata>

 <form id="training">
 <field name="course">
 <grammar type="application/srgs+xml" src="/grammars/training.grxml"/>
 <prompt>Which course do you want to take?
 Here is the list of courses:
 <!-- list of courses offered -->
 </prompt>

 <if cond="course == 'operator' ">
 <goto next="http://javaschool.com/school/public/speech/vxml/operator.vxml" />
 </if>

 <noinput>
 I could not hear you.
 <reprompt/>
 </noinput>

 <nomatch count="1">
 Please select any Java, Wireless, or Ontology course from the list.
 <reprompt/>
 </nomatch>

 <nomatch count="2">
 <prompt>
 I am sorry, we have almost so many types of training courses but not this one.
 I would recommend you to start with the Ontology Introduction course at this time.
 </prompt>
 </nomatch>

 <nomatch count="3">
 I switch you to the operator.
 Hopefully you will find the course you want.
 Good luck.
 <goto next="http://javaschool.com/school/public/speech/vxml/operator.vxml" />
 </nomatch>

 </field>

 <block>
 <submit next="http://javaschool.com/school/public/speech/vxml/training.jsp"/>
 </block>
 </form>
</vxml>
 </form>
</vxml>

[Fig.12-22]

The <metadata> element provides hidden (and silent) information about the
document, which nonetheless serves (or will serve) an extremely important role
in the interconnected world. This information feeds search engines and helps end
users find the document.

The metadata element ends our voyage into VoiceXML technology, and also
ends this chapter.

Summary

This chapter reviewed voice technologies, speech synthesis and recognition,
related standards, and some implementations.

VoiceXML-based technology is the most mature, and is prime-time ready for
what it was designed for: telephony applications that offer menu driven voice
dialogs that eventually lead to services.

Data communications is growing, and wireless devices will begin to exchange
more data packets outside than inside of the telephony world. At that point, the
lightness and multi-modality of SALT will make it a stronger competitor.

Neither of these technologies was designed for a natural language user interface.
One common limitation is the grammar rules standard defined by the SRGS.
They fit perfectly into the multiple-choice world, but have no room for the
thoughtful process of understanding.

Integrating Questions
What are the common features of speech application architectures?

What role plays XML in speech applications?

Case Study

1. Create a SALT file, similar to Fig.12-11.xml, that is related to a book order.
2. Create a grammar file to support ordering a book.
3. Describe an application at your workplace that can benefit from speech technology

References

1. The Java Speech API - http://java.sun.com/products/java-media/speech
2. The JavaTM Speech API Markup Language (JSML) -

http://java.sun.com/products/java-media/speech/forDevelopers/JSML
3. Speech Synthesis Markup Language - http://www.w3.org/TR/speech-

synthesis/
4. The JavaTM Speech Grammar Format (JSGF) Specification –

http://java.sun.com/products/java-media/speech/forDevelopers/JSGF/
5. Sphinx, open source speech recognition project -

http://sourceforge.net/projects/cmusphinx/
6. Microsoft Speech SDK -

http://download.microsoft.com/download/speechSDK/
7. Rene Nyffenegger, A C++ Socket Class for Windows, online, Internet,

Dec. 20, 2002. http://www.adp-gmbh.ch/win/misc/sockets.html
8. Speech Application Language Tags (SALT) Technical White Paper,

online, SALTforum, Internet, 01/20/2002. Available:
http://www.saltforum.org/spec.asp

9. VoiceXML - www.voicexml.org/spec.html
10.Speech Recognition Grammar Standard (SRGS),

http://www.w3.org/TR/speech-grammar
11.Natural Language Semantics Markup Language -

http://www.w3.org/TR/nl-spec/
12.Call Control XML - http://www.w3.org/TR/ccxml/
13. Standard ECMA-262 ECMAScript Language Specification

http://www.ecma-international.org/
14.Ungar, David, and Smith, Randall B. Self: The Power of Simplicity.

OOPSLA '87 Conference Proceedings, pp. 227–241, Orlando, FL,
October 1987

15."Dublin Core Metadata Initiative ", a Simple Content Description Model for
Electronic Resources. - http://purl.org/DC/

http://purl.org/DC/
http://www.ecma-international.org/
http://www.w3.org/TR/ccxml/
http://www.w3.org/TR/nl-spec/
http://www.w3.org/TR/speech-grammar
http://www.voicexml.org/spec.html
http://www.saltforum.org/spec.asp
http://www.adp-gmbh.ch/win/misc/sockets.html
http://download.microsoft.com/download/speechSDK/
http://sourceforge.net/projects/cmusphinx/
http://java.sun.com/products/java-media/speech/forDevelopers/JSGF/
http://www.w3.org/TR/speech-synthesis/
http://www.w3.org/TR/speech-synthesis/
http://java.sun.com/products/java-media/speech/forDevelopers/JSML
http://java.sun.com/products/java-media/speech

	Voice Technologies on the way to a Natural User Interface
	What is a Natural User Interface?
	Hello <div type="paragraph">How are you</div>
	JSML Factory as one of the AVIFactory implementations
	Speech Synthesis Markup Language

	Speech Recognition with Java
	Improving Sphinx recognition rate with training.

	Microsoft Speech Software Development Kit
	Volume
	Rate
	Pitch
	Emph
	Voice
	Speech technology to decrease network bandwidth

	Standards for scenarios for speech applications
	Speech Application Language Tags
	SALT consists of a relatively small set of XML elements. Each XML element has associated attributes and DOM object properties, events and methods. One can write speech interfaces for voice-only and multi-modal applications using SALT with HTML, XHTML, and other standards. SALT controls dialog scenarios through the DOM event model that is popular in web software.
	A spoken message scenario

	Grammar Definition
	Appendix3, Sources, provides more examples (along with C# program source code) for a speech application based on SAPI5. The grammar file can be dynamically loaded and compiled at run-time. This would decrease the number of choices for any current recognition, and improve recognition quality.
	VoiceXML
	What is VoiceXML?

	What does the VoiceXML document look like?
	A list of VoiceXML elements
	 Will that work for you?

	ECMAScript
	Grammar rules
	Resources and Caching
	Metadata

